第一篇:隧道照明设计的软件开发实现的论文
摘要:目前国内外没有专门针对隧道照明设计的软件。为实现隧道照明的自动化设计,设计一款专业的隧道照明设计软件。软件基于Winform框架进行开发。绘图是软件的核心功能,其中二维图形采用GDI+绘制,三维部分使用C#语言封装下的OpenGL图形软件接口实现。以VisualStudio为开发工具,利用SQLite实现数据库设计,软件能使设计人员快速、准确地制作设计方案,并进行仿真模拟。经过测试,软件整体设计符合规范要求,能有效减少隧道照明设计人员的工作量。
关键词:隧道照明;照明设计;GDI+;OpenGL
0引言
公路隧道是陆路交通体系中重要的组成部分,隧道照明设计作为光学、建筑学、信息学、交通安全等多个学科的交叉课题,是公路隧道设计过程中极其重要的环节。隧道照明设计过程中需考虑亮度、照度、均匀度、功率、可控性及安全性等设计参数[1]。现阶段我国对隧道照明的LED灯具设计与规划,仍采用传统散射光的配光设计,一般均为电气设计工程师代为规划,没有专业照明设计人员[2]。专业隧道照明配光软件是智能隧道技术及产业发展亟待满足的重要需求。针对隧道照明应用设计开发一款专业软件,可以方便照明企业与设计院快速、准确地制作设计方案,以便设计方选择灯具的配光、功率进行灯光布置。本软件是基于Microsoft。NETFramework开发环境,使用C#编程语言,基于Winform框架开发的一款标准的Windows桌面应用软件,其中二维图形绘制与输出采用GDI+图形设备接口,三维部分使用C#语言封装下的OpenGL图形软件接口。软件功能包括生成隧道的截面图、截面灯光图、纵向灯光图和三维仿真图,并能进行隧道的分段亮度计算,生成隧道布灯图。该软件极大简化了整个隧道灯光设计过程,且整体设计符合规范要求,能有效减轻隧道配光师和隧道灯光安装人员的工作强度。
1系统设计
1。1系统总体架构(1)总体架构。软件采用C#语言编写,是基于微软。netframework框架的Winform桌面应用程序[3]。(2)数据库架构。采用轻量级的SQLite数据库,用于存储用户权限信息、灯具信息和文件浏览历史信息等。(3)绘图与图像输出。软件主要功能是实现各种仿真和布灯图的绘制与输出。绘图主要是采用C#语言内置的GDI+进行绘制[4],采用C#语言内置图形对象的输出方法进行输出。(4)三维图像的生成。软件的三维图采用SharpGL控件进行绘制。该控件在底层封装了OpenGL框架,能进行三维建模[5]。1。2系统功能模块设计根据软件界面划分的各模块的主要功能如下:(1)登录界面。该界面提供登录功能,用户输入用户名和密码后,登录系统,系统会根据用户所属类别,加载不同的功能页面。同时还提供浏览模式,该模式无需密码就能进入系统,但是只提供打开和浏览功能,不能进行任何修改。(2)软件主页面。该界面提供打开项目与新建项目的功能,点击相应按钮即可进入相应功能,并且提供打开项目历史记录的功能,可快速打开最近打开过的项目文件。(3)参数输入界面。该界面的功能是让用户输入隧道的基本参数、灯具的基本参数和灯具的布置参数还有项目相关信息等,为后续的仿真与设计提供基本的数据[6]。(4)隧道参数界面。该界面会展示前一界面输入的各项参数,如需修改可在此界面进行修改。后续也可在此界面展示其它界面中修改的隧道参数。(5)软件功能主界面。在打开项目或者新建项目输入参数确认后会进入此界面界面左侧有一列功能按钮,点击相应功能按钮即可进入相应功能,在界面右侧显示相应功能的子界面。(6)隧道截面图界面。该界面根据隧道基本参数自动生成隧道的截面图,并标注各项基本参数,让设计者对隧道有基本的直观认识。(7)隧道截面灯光图界面。该界面根据灯具的布置参数自动生成隧道的截面灯光仿真图,用户可根据此图参照设计规范和实际需求对灯具布置参数进行修改以满足实际项目需求。(8)隧道纵向灯光图界面。该界面根据灯具的布置参数自动生成隧道的纵向灯光仿真图,用户可根据此图参照设计规范和实际需求对灯具布置参数进行修改以满足实际项目需求。(9)分段亮度计算界面。该界面提供根据隧道照明设计规范自动计算的各段亮度值,如果实际项目中需要对其进行调整,可在该界面中完成。(10)布灯图界面。该界面根据隧道和灯具的各项参数自动生成隧道的布灯图并以矢量图格式输出,与布灯相关的各项参数能在此界面进行修改。(11)隧道三维图界面。该界面支持查看隧道的三维模型。(12)灯具数目统计界面。该界面支持对隧道布灯图中所使用的灯具规格和数目的统计。(13)权限管理界面。该界面支持对当前用户密码的修改,新建用户和重置用户密码等功能。该界面与用户权限相关联。只有管理员账户才能使用全部功能。
2系统实现
为方便设计人员使用,本软件采用基于C#语言的Winform框架进行开发,是一款标准的Windows桌面应用程序,由于软件功能模块较多,只选取最核心的功能介绍系统实现。2。1隧道、灯具和其它辅助类建立由于C#是面向对象开发语言,所以在正式功能算法实施之前,先要进行模型也就是类的建立。类就是对具有相同数据元素和功能对象的抽象,实际上就是一种数据类型。类的构成包括字段和函数。当用户新建项目时,要求用户输入隧道和灯具及灯具布置的相关参数,隧道参数包括[7]:车道宽度、左侧检修道宽度、右侧检修道宽度、建筑界限高度、隧道顶高、检修道高度、隧道长度、设计时速、纵坡、车道数、洞外亮度、通行方式、设计小时交通量等。灯具参数包括各分段灯具的功率、光效以及灯具利用系数、养护系数等。灯具安装参数有基本灯安装间距、灯具安装高度、灯具与隧道中线的距离、安装倾角、投射角、纵向投射角、布灯方式、出入口安装余量等。对于所需的参数,都封装到隧道类和灯具类中,然后再对其中需要处理的数据进行方法的封装[8]。除了两个核心类,软件同时需要建立一些辅助仿真与绘图的类,如三维图绘制所需的向量计算类和摄像机类[9]。还有隧道相关计算需要的隧道工具类,管理项目和权限的项目类和用户类等。2。2隧道截面图与平面配光图绘制各种二维图形的绘制与输出是本软件的核心功能,采用图形设备接口GDI+(GraphicsDeviceInterface)进行二维图形绘制。它是一组通过C++类实现的应用程序编程接口,主要负责在屏幕和打印设备输出有关信息。具体编程流程是:先创建一个图形对象(Graphics),然后通过面向对象的编程方式调用它的各种方法,如Draw—Line(Penpen、Pointpt1、Pointpt2),DrawElilpse(Penp、floatx、floaty、floatwidth、floatheight),实现图形绘制[10]。对于隧道建筑建模而言,隧道的走线及净空断面是模型的关键,走线指决定隧道长度及方向隧道纵向的主轴中心线净空断面决定隧道的外形结构。由于灯具属于隧道内建筑,还需要考虑隧道的建筑界限[11]。根据《公路隧道设计规范》关于隧道截面设计图的规定,软件通过GDI+接口进行编程绘制隧道的截面图。同时要根据输入的灯具布置参数如投射角、安装倾角灯进行隧道配光的仿真,包括截面与纵向灯光的配光仿真,其主要意义是验证配光的均匀性,同时使设计能满足一些其它配光上需要考虑的因素,如隧道配光要求灯光能照射到隧道侧壁两米高的范围,这样能通过侧壁反射,提高路面大概10%亮度。2。3隧道分段亮度计算隧道照明是隧道各项设计中一个重要环节,通常一个隧道的最低亮度由其车流量和设计时速决定[12]。由于人眼对光学的适应性是一个逐步的过程,所以从交通安全角度上,隧道被分为入口段、过渡段、中间段和出口段,从亮度角度而言先逐级递减,后逐级增加。《公路隧道照明设计细则》中对各个分段的亮度进行了详细的建议性规定,软件可根据用户输入的参数对隧道进行自动分段,并根据《公路隧道照明设计细则》计算出各段的亮度值,某些情况下设计师希望改变亮度值,软件也提供了修改各段亮度的功能,以方便调整后续的布灯操作。2。4隧道布灯图绘制与输出隧道布灯图绘制是该软件最核心的功能,它能直接指导隧道布灯工作[13]。隧道灯分为基本灯与加强灯,各个分段都要布置基本灯,基本灯布灯间距可根据规定算出参考值,设计师也可手动修改其值,一般除了中间段,其它分段都要布置加强灯,可根据计算出的各段亮度值、灯具的布置系数,结合《公路隧道照明设计细则》中的计算公式进行计算:Eav=ηφΜωWS由上式可得出各段的加强灯间距和各段基本灯间距内加强灯的个数。如果设计师需要修改各段基本灯间距内加强灯的个数,也可手动修改。绘图时同时要考虑隧道的布灯方式,布灯方式主要有:中线布置、中线侧偏布置、两侧对阵布置、两侧交错布置4种,绘制时可根据实际需求进行选择,布灯同时需要考虑一些其它条件,如入口段布灯通常比较密集,可以选择将入口段的灯具布成两排,这也是设计师通常会采用的布灯方式。隧道出口和入口一般会留有一定的余量不进行布灯,绘制布灯图时也要考虑该因素[14]。隧道布灯图要进行一些标注,比如要标注各分段名称及其长度、各分段加强灯的间距、出入口余量长度、行车方向,同时还要区分加强灯与基本灯。绘图时采用GDI+图形设备接口进行编程,输出时采用windows的矢量图格式emf进行输出,可以方便后期的编辑与使用。2。5隧道三维图绘制首先运用OpenGL建模功能。OpenGL虽然提供基本的点、线、多边形的绘制函数与一部分复杂空间体及其组合,然而面对具有复杂三维结构的隧道,无法直接使用函数进行绘制[15]。使用OpenGL以顶点为图元,以空间多边形为空间体的各个面,可以避免凹多面体不能被函数直接表示的问题,以基本几何图形尤其是矩形为基础绘制隧道形状。然后运用OpenGL中的纹理映射、材质的光反射设置、环境光源设置,完成对隧道内地面、检修道、隧道墙壁的材质、纹理等的渲染,使三维场景可以模拟现实中的隧道外形。OpenGL提供视点变化、视角变换、模型变换、投影变换等函数。利用摄像机类中封装好的的变换可以在模拟隧道中任意改变观察者位置,转变视线方向。利用封装方法可以初始化自己的视点,指定观察角度、方向,也可以静态地观察图像。通过这些方式,可以实现在模拟隧道中自由漫游,方便对模拟隧道进行多角度全方位的观察[16]。OpenGL中封装了计算光照强度和光照方向的算法,其中以平行光和二次衰减光为主,可以利用其确定光源位置、光源属性等接口完成方法的封装。通常由于第一个光源与其它光源有一定设置差距,经常被用作整体环境光源,在本文即为自然光源(洞外亮度L20(S))。完成光源设置后,根据光源的属性,以及隧道外观的材质属性可得到隧道内部呈现的亮度,场景中光强的调节通过改变光源属性中的RGBA分量实现。
3系统测试
软件安装后,通过桌面图标打开软件,进入登录界面,输入默认的管理员账号与密码,点击登录能正常进入软件主界面,当输入了错误的用户名或密码后,将提示密码错误,不能进入软件。进入软件主界面后能选择是新建项目还是打开已保存的项目,还能快速打开已记录的历史项目。当选择新建项目后,进入参数输入界面;当输入符合软件校验规则的参数后可进入软件的功能主界面,当输入的参数不符合预设规则时,软件会给出相应提示。软件功能主界面默认显示隧道的属性页面。主界面左侧列出各个子功能界面的按钮。
4结语
本文设计并实现了基于C#和Winform框架的隧道照明设计软件,功能包括生成隧道的截面图、截面灯光图、纵向灯光图和三维仿真图,并能计算隧道的分段亮度,生成并输出隧道布灯图,经过多次测试及工程师试用证明,该软件能大幅简化整个隧道的灯光设计过程,且整体设计符合规范要求,能有效减轻隧道配光师和隧道灯光安装人员的工作量。
参考文献:
[1]刘翠萍。基于LED的公路隧道照明设计与中间视觉下LED隧道照明研究[D]。青岛:中国海洋大学,2012。
[2]周晓波。LED灯光照明系统的仿真研究及其软件开发[D]。武汉:武汉理工大学,2004。
[3]缪平,朱晓辉,丁浩,陈苏蓉。WinFrmo界面统一管理方法研究[J]。软件导刊,2017,16(09):1—3。
[4]陈本峰,苏琦。WindowsGDI+的研究与应用[J]。计算机应用研究,2003,13(03):56—59。
[5]王晓松,徐妍,田董炜,刘志强,胡梦涛。SharpGL三维建模技术实现[J]。软件导刊,2017,16(04):205—208。
[6]杨超,程翠。公路隧道照明灯具利用系数研究[J]。照明工程学报,2017,28(1):97—101。
[7]涂耘,史玲娜,王小军。新旧规范对比下的隧道照明节能设计研究[J]。照明工程学报,2015,26(1):50—54。
[8]DEGNANJ。Lightingmountains:thestateoforegonmakesitstun—nelsystemalotbrighter[J]。Roads&Bridges,2005,43(10):42—46。
[9]祝敏。基于OpenGL的LED灯光情景仿真[D]。哈尔滨:哈尔滨理工大学,2007。
[10]闫宇晗,常鑫。在C#中用GDI+实现图形动态显示[J]。计算机技术与发展,2006,8(12):117—118+232。
[11]但小岗。SQLite数据库在WindowsForms应用开发中的应用研究[J]。价值工程,2016,35(21):141—142。
[12]王鹏展。LED道路照明光环境优化技术探索[D]。上海:复旦大学,2011。
[13]张善伟。公路隧道照明设计中DIALux的适用性及建模方法分析[J]。照明工程学报,2014,25(5):93—97。
[14]张玲,陈元春,孙勇。基于GDI+的通用图形平台设计[J]。计算机工程,2005,23(12):218—220。
[15]吴伟和,郝爱民,李智。基于直接光照的全局光照模拟[J]。计算机工程,2009,35(10):257—258。
[16]李宁。高速公路隧道照明节能技术及控制方法研究[D]。昆明:昆明理工大学,2013。
第二篇:隧道论文
隧道新技术新理念及发展趋势
摘要:隧道通常指用作地下通道的工程建筑物。一般可分为两大类:一类是修建在岩层中的,称为岩石隧道;一类是修建在土层中的,称为软土隧道。近年来,随着城市和现代交通建设的飞速发展,地下空间开发规模越来越大,一些隧道及地下工程不得不在复杂地质条件下修建,当围岩稳定性和结构变形控制不能满足隧道施工和环境安全时,必须采取辅助施工方法对其进行处理。一般有注浆方法与施工方法。关键词:注浆、施工、围岩
一、注浆法
注浆作为地下软弱围岩和地下水处理的一项关键技术,已经成为隧道及地下工程施工技术研究和应用的重要部分。主要有以下几种:
1、全断面帷幕注浆工法全断面帷幕注浆工法由日本于70年代结合青函隧道创建。该工法是对隧道开挖引起的松动圈进行注浆加固,形成全断面注浆帷幕,以此来抵外抗水压力。其假定地层是均匀的,外侧水压力均匀分布,注浆堵水加固范围与水压力有关,水压力越高、水量越大,加固范围也就越大。目前平导普遍采用3~5m注浆圈,正洞采用5~8m注浆圈。
2、精细化注浆设计新工法,实际工程中地层是不均匀的,其透水性、外侧水压力也是不完全相同的。精细化注浆设计工法就是根据工程地质情况,先进行分区定位,确定地质情况,通过前期顶水注浆改变透水场条件,使地层中水量得到有效控制,然后按均匀地层进行“合理步距,由外及内”方式实现基本注浆加固,保证隧道开挖安全的基本要求。该工法主要包含四个方面关键技术:
①分区定位、锁定区域
先考虑对隧道外3~5m基本注浆区进行钻探注浆相结合,确定需要注浆时按基本加固区进行注浆。施工时,选取周边4~6个注浆孔进行钻探注浆,遇水顶水,遇破碎加固。通过这4~6个孔确定隧道周围强水区与弱水区。
②外堵内固、区域加强
先对基本注浆区进行钻孔注浆,基本注浆区只设计两圈,外圈孔位于隧道外3~5m,内圈孔为1~3m。严格按照“先外圈后内圈,同圈间隔跳孔”的顺序进行注浆。基本注浆区完成后,对锁定的强水区进行补注浆,注浆范围为5~8m。③环环相扣、过程控制
严格按照“先外圈后内圈、同圈间隔跳孔”的顺序进行注浆,基本注浆区完成后,必须对强水区进行补孔注浆。④效果检查、标准评定
高压富水断层既要达到堵水效果,又要起到加固作用,因此,应严格按制定的标准进行注浆效果检查,不达到标准必须进行补注浆。
3、施工模式探注结合施工模式在确定前方地层“富水、软弱破碎” 必须通过注浆堵水加固施工才能保证安全开挖的前提下,提出“软弱地层、分区定位,探注结合”的系统化过程控制施工理念。注浆孔兼超前探孔进行施工,“一孔两用”达到既对前方不良地层进行判断,优化方案的指导价值又对注浆预设计进行试验的目的,有效地节约了时间。
4、新型注浆材料:普通水泥单液浆强度高,但凝胶时间长;双液浆凝胶时间短,但强度低,且耐久性差。经过现场研究硫铝酸盐水泥单液浆,并在工程中应用。该浆液凝胶时间为1h30min左右,8h抗压强度达5MPa以上,7天抗压强度达到18MPa以上。浆液具有:凝结可控、高强可靠、操作简单、扩散控域、工艺匹配、经济适用、绿色环保、堵水高效的特点,既具有普通水泥单液浆高强的特点,又兼备双液浆短凝的优势,使用成本低于双液浆,具有很高的推广应用价值。
5、注浆效果检查新方法:对注浆效果进行合理评价是保证安全施工和确保注浆质量的关键。目前采用的评定方法可以分为四大类。(1)分析法;(2)检查孔法;(3)开挖取样;(4)物探。最为直观且常用的方法为检查孔法。对于以堵水为目的的,通过检查孔可以通过分析出水量来评价注浆效果;而对于以加固地层为目的的常采用取芯法,分析浆液填充加固情况。但由于目前施工技术水平限制,取芯过程受机械破坏,取芯施工用水等影响,芯样很难真实反映加固效果,且取芯耗时长,一般很少采用该方法。目前利用孔内成像技术进行注浆效果评定,能够较为直观的对浆液充填度和地层的稳定性以及出水情况进行分析判识,是一种操作方便实用的方法,可取代钻孔取芯在施工中推广应用,目前象山隧道注浆就采用该方法。
二、隧道施工方法
浅埋隧道是一种特定条件下的隧道工程,其施工不仅受覆盖层地质因素的制约,而
且还受地面环境的影响。浅埋隧道有整座隧道浅埋和隧道部分地段浅埋两种情况。常用的施工方法有
1、明挖法、地下连续墙法、盖挖法、浅埋暗挖法及盾构法等。
1、明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。
2、盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部的工程在封闭的顶盖下进行施工,主体结构可以顺作,也可逆作,盖挖法施工主要有以下几种类型:盖挖顺作法;盖挖逆作法。盖挖半逆作法;盖挖顺作法与盖挖逆作法的组合(浅埋暗挖法则是在特定条件下),不挖开地面,全部在地下进行开挖和修筑衬砌结构的隧
道施工方法。
3、隧道工程采用盾构法在软弱地质条件下进行暗挖法施工已很普遍,当然也可适用于浅埋隧道的施工。修建浅埋地段隧道有时因周围环境等要求须采用暗挖法施工,称为浅埋暗挖法。浅埋暗挖法是参考新奥法的基本原理,开挖中采用多种辅助施工措施加固围岩,充分调动围岩的自承能力,开挖后即时支护,封闭成环,使其与围岩共同作用形成联合支护体系,有效地抑制围岩过大变形的一种综合施工技术。采用浅埋暗挖法应与明挖法、盖挖法、盾构法等施工方法,进行经济、技术及环境因素等方面的分析比较。
4、沉管法也称预制管段沉放法,简单地说就是先在干坞中或船台上预制大型混凝土箱形构件或是混凝土和钢的组合箱形构件,并于两端用临时隔墙封闭,舾装好拖运、定位等设备,然后将这些构件浮运沉放在河床上预先浚挖好的沟槽中并联接起来,最后回填砂石并拆除隔墙形成隧道。悬浮隧道是沉管隧道的一种特殊形式,其特殊性表现在沉管管段不是埋在河底沟槽内,而是悬浮于水中,隧道用锚索锚固于一定间隔的海底锚座上,锚索另一端则通过各固定在隧道上的套环与隧道主体结构相连。沉管技术在本世纪经历过多次革新。1958年古巴哈瓦那建成第一座完全预应力的沉管隧道;荷兰于60年代发明了举世闻名的吉那止水带,使得水力压接法更加简洁有效,这是管段水下连接的重大革新。在基础处理技术方面,丹麦于40年代发明出喷砂法;瑞典于60年代首先成功采用灌囊法,荷兰在70年代发明了更为先进的压砂法,这是沉埋技术中的又一项重大革新;日本在70年代推出压注混凝土法和压浆法。此外,日本在接头抗震方面也取得不少进展,过去在地震区修建隧道时,对地震缺乏特别的预防措施,而现在设计的接头处可以有相当挠度和纵向位移,在允许范围内对沉陷和温度影响也采取了类似的措施。近年来,随着现代科学技术的发展,激光测量仪、电子定位系统等先进设备已应用于施工中,使得沉管隧道质量更加优良,同时工期大大缩短。在我国,香港和台湾借助国外
先进技术共已建成四条沉管隧道,中国大陆第一条沉管道路隧道—广州珠江隧道已于1993年底通车,此外,宁波甬江隧道也已建成。我国目前的沉管隧道设计及施工技术还处在积累经验阶段,但我国经济的迅猛发展为其进一步发展创造了良好的条件。
5、顶管隧道是公路与铁路构成立体交叉的一种特殊构造物。是在不中断既有铁路线交通的条件下,确保铁路交通能照常安全运行;不影响或较小影响列车车速的一种构筑立体交叉的方式,是把在线路一侧基坑内预制好的钢筋混凝土箱涵,用顶进施工方法穿越铁路,与铁路构成的立体交叉。以这种方式建成的结构称为顶管隧道,或称顶进箱涵桥。这种方式还可运用于建造穿越铁路的过水涵管、水渠以及矿山排洪沟等。用电算程序取代了繁杂的手算工作,缩短了设计周期。箱涵的横断面形式也由单孔、双孔及三孔的一次顶进,发展到用单孔组合成分离式双孔、三孔等不同形式。还相应地改良了顶进设备,改变顶进工艺,减小设备功率、从而达到节省投资的目的。在施工方法上也变得多样化,由单一的“顶”演变到对顶、顶拉、牵引等多种方式,在采用中继千斤顶设施后大幅度地降低了传到后背上的反顶力。此外,还在减摩措施上得到进展,把顶力减少到相当低的程度。
6、盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需千斤顶;钢筒尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,应在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井处安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构施工法之所以能在各国迅速发展,主要是它具有以下优点:
1、可在盾构支护下安全地开挖、衬砌。
2、掘进速度快。盾构的推进、出土、拼装衬砌等全过程可实现机械化、自动化作
业,施工劳动强度低。
3、施工时不影响地面交通与设施,穿越河道时不影响航运。
4、施工中不受季节,风雨等气候条件影响。
5、施工中没有噪声和振动,对周围环境没有干扰。
6、在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。21世纪是信息技术突飞猛进的时代,隧道工程建设也必将朝着信息化设计与施工的方向发展。目前,土木工程中计算机的应用可以划分为四个层次哪,第一层次是应用一些通用软件,如:DOS、WINDOWS、OFFICE、AUTOCAD等;第二层次是一些设计和施工中的专用软件,如;PKPM、ZD一
6、FLAC、ANSYS、概预算软件等;第三层次是使用综合性施工软件或系统;第四层次是集成化的设计施工系统。目前开发应用的一些地下工程应用软件,大多数停留在第二层次和第三层次,而且在许多方面也有待于完善。研制开发适应新时期隧道工程建设的各种实时、快捷、准确和网络化的实用软件,己是必然趋势。近年来,工程监测技术不断朝自动化、网络化、数字化(可视化)和实时快速化的方向发展。随着监测技术、通讯技术、网络技术、自动化技术和计算机技术的不断发展,研制开发信息化设计与施工网络系统也势在必行。该系统的主要目标是利用监测技术、通信技术、计算机技术、网络及隧道设计、施工与管理技术建立一个集信息采集、分析处理、信息反馈为一体的局域网络,并通过Intemet实现业主方、监理方、设计方与施工方之间的信息通讯以及对建设工程的实时监控等。这些系统的开发与应用必将对隧道工程建设的日趋规范化、信息化水平和建设效率的提高有重要的促进作用。
参考文献
[1]冯卫星主编.铁路隧道设计.成都:西南交通大学出版社,2005.[2]黄成光主编.公路隧道.交通普通中等专业学校内部试用教材2008.[3]刘建航等编著.盾构法隧道.北京:中国铁道出版社,1997.[4]铁道部基建总局编.铁路隧道新奥法指南.北京:中国铁道出版社,2007.[5]铁道隧道光面爆破技术规则.北京,中国铁道出版社,2008.
第三篇:隧道实现方案总结
华为隧道配置方案总结 IPv4 over IPv6隧道配置
1.1 IPv4 over IPv6隧道简介
在IPv4 Internet向IPv6 Internet过渡的后期,IPv6网络已被大量部署,此时可能出现IPv4孤岛。利用隧道技术可在IPv6网络上创建隧道,从而实现IPv4孤岛的互 连。这类似于在IP网络上利用隧道技术部署VPN。在IPv6网络上用于连接IPv4孤岛的隧道,称为IPv4 over IPv6隧道。
图1 IPv4 over IPv6隧道组网图
IPv4 over IPv6隧道技术的原理如图1所示:
1)在边界路由器启动IPv4/IPv6双协议栈。
2)边界路由设备在收到从IPv4网络侧来的报文后,如果报文的目的地不是自身,就把收到的IPv4报文作为净荷,加上IPv6报文首部,封装到IPv6报文里。
3)在IPv6网络中,封装后的报文被传递到对端的边界路由设备。对端边界路由设备对报文解封装,去掉IPv6报文首部,然后将解封装后的IPv4报文转发到IPv4网络中。
1.2 IPv4 over IPv6隧道配置命令
具体配置步骤如下: 1)配置Tunnel接口
行命令interface tunnel interface-number,创建Tunnel接口,并进入Tunnel接口视图。
#烽火对应命令:interface tunnel <1-65535> 执行命令tunnel-protocol ipv4-ipv6,将Tunnel类型指定为IPv4 over IPv6隧道。
#烽火对应命令:tunnel mode(ipip|gre|mpls-te),需要扩展为 tunnel mode(ipip|gre|mpls-te|ipv4-ipv6) 执行命令source { source-ipv6-address | interface-type interface-number },设置Tunnel接口的源IPv6地址或源接口。#烽火对应命令:tunnel source A.B.C.D,需要扩展为tunnel source(A.B.C.D |X:X::X:X)
执行命令destination ipv6-address,设置Tunnel接口的目的IPv6地址。
#烽火对应命令:tunnel destination A.B.C.D,需要扩展tunnel destination(A.B.C.D |X:X::X:X)
指定Tunnel接口的IP地址。执行命令ip address ip-address { mask | mask-length } [ sub ],配置Tunnel接口的IPv4地址。#烽火对应命令:ip address A.B.C.D/M 2)配置Tunnel的路由
配置经过Tunnel接口的路由。可以使用静态路由和动态路由两种方式,这里不才赘述可以参考华为文档。
1.2.1 IPv4 to IPv6隧道配置实例
图1 IPv4 over IPv6隧道组网图
#RT2的配置文件: #RT4的配置文件:
IPv6 over IPv4隧道配置
2.1 IPv6 over IPv4隧道简介
在IPv4 Internet向IPv6 Internet过渡的初期,IPv4网络已被大量部署,而IPv6网络只是散布在世界各地的一些孤岛。采用专用的线路将这些孤岛互连起来,显然是不经济 的,通常的做法是采用隧道技术。利用隧道技术可在IPv4网络上创建隧道,从而实现IPv6孤岛的互连。这类似于在IP网络上利用隧道技术部署VPN的情况。
在IPv4网络上用于连接IPv6孤岛的隧道,称为IPv6 over IPv4隧道。为了实现IPv6 over IPv4隧道,需要在IPv4网络与IPv6网络交界的边界路由设备上启动IPv4/IPv6双协议栈。
图2 IPv6 over IPv4隧道组网图
IPv6 over IPv4隧道技术的原理如图2所示:
1)在边界路由器启动IPv4/IPv6双协议栈。
2)边界路由设备在收到从IPv6网络侧来的报文后,如果报文的目的地不是自身,就把收到的IPv6报文作为净荷,加上IPv4报文首部,封装到IPv6报文里。
3)在IPv4网络中,封装后的报文被传递到对端的边界路由设备。4)对端边界路由设备对报文解封装,去掉IPv4报文首部,然后将解封装后的IPv6报文转发到IPv6网络中。
2.2 IPv6 over IPv4隧道分类
根据创建隧道的方式,可以对隧道进行分类。目前,常用的IPv6 over IPv4隧道模式有以下几种。
IPv6 over IPv4手动隧道
IPv6 over IPv4 GRE隧道(简称GRE隧道)IPv6 over IPv4自动隧道(简称自动隧道)6to4隧道 ISATAP隧道
2.2.1 GRE隧道
使用IPv4的GRE(Generic Routing Encapsulation)隧道也可以承载IPv6流,此时的GRE隧道称为IPv6 over IPv4 GRE隧道。与IPv6 over IPv4手动隧道相同,GRE隧道也是两点之间的链路,每条链路都是一条单独的隧道。GRE隧道不与特定的乘客或传输协议绑定,只把IPv6作为乘客协 议,把GRE作为承载协议。
GRE隧道也是在隧道两端的边界路由设备上通过人工配置而创建的,也需要静态指定隧道的源IPv4地址和目的IPv4地址。与手动隧道不同的是,GRE隧道为了增强隧道的安全性,可以设置对GRE报文头进行校验以及对隧道的关键字进行验证。GRE隧道可用于边界路由设备之间,或者用于边界路由设备与主机系统之间。隧道两端的主机和路由设备均需支持IPv4和IPv6协议栈。
2.2.2 自动隧道
要创建IPv6 over IPv4自动隧道,需要使用一类特殊的IPv6地址,即兼容IPv4的IPv6地址。兼容IPv4的IPv6地址格式为: 0:0:0:0:0:0:IPv4-address
其高阶96bits均为0,其低阶32bits是一个IPv4地址。该IPv4地址必须是IPv4网络中可达的IPv4地址,且不能是组播地址、广播地址、环回地址或未指定的地址(0.0.0.0)。
在配置自动隧道时,只需要在边界路由设备或主机上指定隧道源地址,不需要指定隧道的目的地址。隧道目的地址是从原始的IPv6报文的目的地址中获取的。
IPv6 over IPv4自动隧道通常用于孤立的IPv4/IPv6双协议栈主机需要穿过IPv4网络访问远端IPv6网络的情况。在孤立的IPv4/IPv6主机和IPv4/IPv6路由设备之间需要配置自动隧道。
在建立自动隧道时,需要隧道两端都要配置兼容IPv4的IPv6地址,兼容IPv4的IPv6地址又依赖于隧道的物理接口的IPv4地址,受到IPv4地址短缺的限制,因而有一定的局限性。2.2.3 6to4隧道
6to4隧道也是一种将多个IPv6孤岛通过IPv4网络互连的机制。6to4隧道可在孤立的IPv6网络和IPv4网络之间的边界路由设备上配置。6to4隧道两端的边界路由设备必须同时支持IPv4和IPv6双协议栈。
6to4隧道与手动配置隧道的主要区别在于:6to4隧道可以是点到多点的连接,而手动隧道仅是点到点的连接。所以6to4隧道的路由设备并不是成对配置的。
6to4隧道与自动隧道类似,它可自动查找隧道的另一端点,但它不需要指定兼容IPv4的IPv6地址。
6to4隧道使用了一种特殊的IPv6地址,即6to4地址,其格式为: 2002:IPv4地址:子网ID:接口ID
6to4地址的前缀是2002:IPv4地址,前缀长度为48bits。其中IPv4地址是为IPv6孤岛申请 的一个全球唯一的IPv4地址。在IPv6/IPv4边界路由设备与IPv4网络链接的物理接口上必须配置该IPv4地址。子网ID的长度为 16bits,接口ID的长度为64bits,均由用户在IPv6孤岛内分配。
如图3所 示,Site1和Site2均为6to4网络,6to4网络内的主机和路由设备被分配了6to4地址。Site1内的主机和路由设备的6to4地址内嵌入 的IPv4地址就是路由设备A到IPv4网络接口的IPv4地址。Site2内的主机和路由设备的6to4地址内嵌入的IPv4地址就是路由设备B到 IPv4网络接口的IPv4地址。路由设备A和路由设备B均为6to4路由设备。
图3 6to4隧道
Site1内的主机要访问Site2内的主机时,其工作原理如下: 1)IPv6报文被传送到路由设备A;
2)路由设备A检查IPv6报文的目的地址,发现是6to4地址,从该6to4地址中获得6to4隧道对端的IPv4地址;
3)路由设备A将该IPv6报文封装到IPv4报文中,IPv4报文头的目的地址就是隧道对端的IPv4地址,源地址就是隧道本端的IPv4地址;
4)路由设备A将该IPv4报文通过IPv4网络转发到路由设备B; 5)路由设备B进行解封装操作,获得原来的IPv6报文,然后将该IPv6报文在Site2内被送到目的主机。2.3 GRE隧道配置命令
1)配置Tunnel接口
行命令interface tunnel interface-number,创建Tunnel接口,并进入Tunnel接口视图。
#烽火对应命令:interface tunnel <1-65535> 执行命令tunnel-protocol ipv6-ipv4 auto-tunnel,将Tunnel类型指定为IPv6 over IPv4自动隧道。
#烽火对应命令:tunnel mode ipv6ip(6to4|isatap|),需要扩展为 tunnel mode ipv6ip(6to4|isatap|gre|) source { ipv4-address | interface-type interface-number },指定Tunnel的源地址或源接口。
#烽火对应命令:tunnel source A.B.C.D,需要扩展为tunnel source(A.B.C.D |X:X::X:X)
destination ipv4-address,指定Tunnel的目的地址。
#烽火对应命令:tunnel destination A.B.C.D,需要扩展为tunnel destination(A.B.C.D |X:X::X:X)
指定Tunnel接口的IPv6地址。ipv6 address { ipv6-address prefix-length | ipv6-address/prefix-length },配置Tunnel接口的IPv6地址。
#烽火对应命令:ipv6 address X:X::X:X /M 2.3.1 GRE隧道配置实例
图4 配置IPv6 over IPv4 GRE隧道组网图
#RouterA的配置文件:
#RouterC的配置文件:
2.4 自动隧道配置命令
1)配置Tunnel接口
行命令interface tunnel interface-number,创建Tunnel接口,并进入Tunnel接口视图。
#烽火对应命令:interface tunnel <1-65535> 执行命令tunnel-protocol ipv6-ipv4 auto-tunnel,将Tunnel类型指定为IPv6 over IPv4自动隧道。
#烽火对应命令:tunnel mode ipv6ip(6to4|isatap|),需要扩展为 tunnel mode ipv6ip(6to4|isatap|auto-tunnel|) source { ipv4-address | interface-type interface-number },指定Tunnel的源地址或源接口。
#烽火对应命令:tunnel source A.B.C.D,需要扩展为tunnel source(A.B.C.D |X:X::X:X)
指定Tunnel接口的IPv6地址。ipv6 address { ipv6-address prefix-length | ipv6-address/prefix-length },配置Tunnel接口的IPv6地址。
#烽火对应命令:ipv6 address X:X::X:X /M 2.4.1 自动隧道配置实例
图5 配置IPv6 over IPv4自动隧道组网图
#RouterA的配置文件:
#RouterB的配置文件:
2.5 6to4隧道配置命令
1)配置Tunnel接口
行命令interface tunnel interface-number,创建Tunnel接口,并进入Tunnel接口视图。
#烽火对应命令:interface tunnel <1-65535> 执行命令tunnel-protocol ipv6-ipv4 auto-tunnel,将Tunnel类型指定为IPv6 over IPv4自动隧道。
#烽火对应命令:tunnel mode ipv6ip(6to4|isatap|) source { ipv4-address | interface-type interface-number },指定Tunnel的源地址或源接口。
#烽火对应命令:tunnel source A.B.C.D,需要扩展为tunnel source(A.B.C.D |X:X::X:X) 指定Tunnel接口的IPv6地址。ipv6 address { ipv6-address prefix-length | ipv6-address/prefix-length },配置Tunnel接口的IPv6地址。
#烽火对应命令:ipv6 address X:X::X:X /M
2.5.1 6to4隧道配置实例
图6 配置6to4隧道组网图
#RouterA的配置文件:
#RouterB的配置文件:
第四篇:地铁隧道结构变形监测数据管理系统的设计与实现论文
摘 要:探讨开发地铁隧道结构变形监测系统的必要性与紧迫性。以VisualBasic编程语言和ACCESS数据库为工具,应用先进的数据库管理技术设计开发地铁隧道结构变形监测数据管理系统。系统程序采用模块化结构,具有直接与外业观测电子手簿连接下传原始观测资料、预处理和数据库管理等功能,实现了测量内外业的一体化。系统结构合理、易于维护、利于后继开发,提高监测数据处理的效率、可靠性以及监测数据反馈的及时性,值得类似工程的借鉴。
关键词:地铁隧道;变形监测;管理系统
随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。地铁隧道结构变形监测内容需根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,由规范[1]与文献[2]知,运营期的地铁隧道结构变形监测内容主要包括区间隧道沉降、隧道与地下车站沉降差异、区间隧道水平位移、隧道相对于地下车站水平位移和断面收敛变形等监测。它是一项长期性的工作,其特点是监测项目多、线路长、测点多、测期频和数据量大,给监测数据处理、分析和资料管理带来了繁琐的工作,该项工作目前仍以手工为主,效率较低,不能及时快速地反馈监测信息。
因此,有必要开发一套高效、使用方便的变形监测数据管理系统,实现对监测数据的科学管理及快速分析处理。现阶段国内出现了较多的用于地铁施工期的监测信息管理系统[3-4],这些系统虽然功能比较齐全、运行效率较高,能够很好地满足地铁施工期监测需要,但它主要应用于信息化施工,与运营期地铁隧道结构变形监测无论是在内容还是在目的上都有着很大的区别和局限性。而现在国外研究的多为自动化监测系统[5-6],也不适用于目前国内自动化程度较低的地铁隧道监测。
此外,能够用于运营期并符合当前国内地铁隧道结构监测实际的监测数据管理系统还较为少见。因此,随着国内建成地铁的逐渐增多,开发用于运营期地铁的变形监测数据管理系统变得越来越迫切。为此,根据运营期地铁隧道结构变形监测内容[1-2]和特点,以isualBasic作为开发工具[7],应用先进的数据库管理技术[8],以目前较为流行的Access数据库作为系统数据库,设计和开发了用于运营期地铁隧道变形监测数据管理系统,不仅提高了监测数据处理的效率和可靠性,保证了监测数据反馈的及时性,而且在某城市地铁隧道变形监测中投入应用,取得较好的效果。
1系统的结构
1.1系统数据库结构
变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。因此,合理的数据库结构不仅是数据库设计的关键,还有利于系统对数据的管理和高效处理分析。考虑到变形监测成果的特点,系统数据库结构设计应不仅能满足用户的需要,而且能使系统需求的资源最少,同时还要使数据库中数据冗余度尽量小,以达到结构合理、易于维护等目的[8]。为此,根据变形监测内容,系统数据库设计由如下数据表构成。
1)测段名表:包括测段编号和测段名称两个字段。为便于变形监测分析,在监测中将相邻两个车站之间的隧道划分为一测段,并按车站和车站之间的隧道进行编号,测段名称则根据各个车站或者车站之间隧道的名称而定,监测点的测段属性值直接根据其所在测段来取对应的编号值,方便查询。
2)监测点属性表:包括监测点名、测段、车道、具体位置、里程、材料、布设时间、布设单位、当前状况、用情况、备注等。其中车道为监测点所在的左、右道或上、下行线;具体位置指测点所处具体的空间位置,如地面、地下、高架等;当前状况是指目前监测点的完好情况,也就是可用否;使用情况是指监测时是否使用。
3)沉降监测成果表:包括编号、监测点名、高程、测期、监测时间、备注等。为了遵守数据库键的唯一性原则和方便查询,各个测点的每期编号由测期号与监测点名组成,因而表中将不会出现相同记录,保证了键的唯一性[8]。
4)沉降差异点属性表:除了测段为各个车站编号,其余与监测点属性相同。
5)沉降差异监测成果表:与沉降监测成果表相同。
6)水平位移监测成果表:包括编号、监测点名、X坐标、Y坐标、测期、监测时间、备注等,测点的编号设置与沉降监测成果表相同。
7)水平位移差异监测成果表:与水平位移监测成果表相同。
8)断面收敛变形监测成果表:包括编号、监测点名、直径
1、直径
2、测期、监测时间、备注等,测点的编号设置与沉降监测成果表相同。
在以上各表中,第一个字段为主关键字,各字段值的类型与字节宽度均按照实际所需的最佳值确定,考虑到测段名的繁琐和数据库管理操作的方便迅捷,在数据库管理时将测段名表与其他各表进行关联[8]。
1.2 系统的总体结构
根据地铁隧道变形监测的内容与特点,系统由系统设置、预处理、数据库管理、在线帮助和退出5个模块组成,总体结构如图1所示。
2系统的功能及特点
2.1系统的功能
2.1.1系统设置功能
1)参数设置:设置系统所使用数据库的地址,实现对地铁的不同隧道段监测数据库分别进行管理,同时还可设置显示计算成果的小数位数等参数。
2)用户设置:可以添加用户和更改用户登录密码,防止非系统用户进入破坏数据,保证监测数据的安全和系统的正常运行。
2.1.2预处理功能
1)观测资料整理:用户可以通过系统的接口程序实现系统和外业观测电子手簿直接相连,下传原始观测资料,并对其计算处理,得到观测成果数据。
2)粗差检验:对观测成果数据进行检验,剔除不合格数据,保证监测数据的正确可靠,同时将检验后的成果数据录入到数据库中。
3)基准点稳定性检验:检验监测基准点的稳定性,确保监测数据的可靠性。
2.1.3数据库管理功能
1)数据查询:包括属性数据查询和监测成果数据查询。查询属性数据时,可以先对属性数据类别和属性值条件进行选择,同时系统动态搜索出满足条件的测点,然后可根据用户实际需要结合监测成果条件(前后测期、两期沉降量、两期沉降速率等)查询出满足要求的测点属性信息,实现对不同类监测点在不同监测成果条件下的属性值进行查询。查询监测成果时,可首先对测点的测段、车道、具体位置等测点主要属性值进行选择,然后再对监测成果的测期、两期变化量、累积变化量和变化速率等条件进行设置,查询出满足用户要求的测点成果。在查询出满足要求的数据后,可导入到EXCEL中进行编辑打印。
2)数据录入和添加:包括监测点属性数据录入添加和监测成果数据录入添加两个功能,用于向数据库录入添加监测点属性信息和监测成果数据。设置有手工录入添加和自动导入两种方式,前者直接在程序界面上的相应空格中填入数据值,实现逐点录入;而后者则将文本数据格式或者EXCEL格式的数据自动导入数据库,实现多点自动导入。添加数据时动态显示已添加的数据和添加后数据库中的所有数据信息,添加完成后可以将已添加的数据导入到EXCEL中进行编辑、打印。在录入添加之前可将所要录入添加的数据按照预定的格式存储在EXCEL或记事本中,随后便可将数据导入到数据库中。
3)数据修改:考虑到操作的规范性,系统只允许对监测点属性进行修改。通过查询所要修改的监测点,对其属性信息进行修改,同时可以动态显示数据库中的监测点属性信息,方便用户及时看到修改结果。
4)数据删除:与数据修改功能相似,通过对数据信息查询后再进行删除,删除前须经确认,然后才能操作,确保准确无误。
5)数据导出:由于在前述操作中已包括本功能,因此系统中无需再单独设此功能模块,避免重复。
2.1.4在线帮助功能
包括帮助目录与帮助主题搜索两个功能,用于系统运行过程中的在线帮助,以文本和图像的形式对系统进行操作说明,并对常见问题作详细解答。
2.1.5退出功能
退出系统。
2.2系统的特点
1)系统充分利用了先进计算机技术的优势,克服了传统的监测数据管理存在的数据查询繁琐、处理分析低效等缺陷。
2)系统操作通过窗口和菜单进行,具有界面友好、操作帮助完善等优点。
3)系统可通过接口程序与外业观测电子手簿相连,下传原始观测资料,并进行计算处理,实现测量内外业一体化。
4)经系统处理的数据成果可直接导入到EX-CEL中,充分利用了EXCEL报表制作的优点,满足了用户对报表格式多样性的要求。
5)监测数据通过系统存入数据库进行管理,使复杂、繁琐的监测数据管理工作变得简单易行,如数据的查询、添加、删除、导入EXCEL等可通过鼠标单击直接实现,提高了工作效率。系统的实现与应用
系统采用Windows2000/Me/XP作为操作平台,以桌面式关系型数据库ACCESS和面向对象的程序设计语言VisualBasic6。0作为开发工具,通过数据库引擎(ADO)[7]与数据库有机的联系在一起。系统开发采用面向对象的方法,它是根据应用问题所涉及的对象,建立于现实世界的一种软件开发思想[7]。利用该方法的关键是对前端概念的理解,只有当应用领域固有的概念被识别和理解了,才能较好的设计系统的数据结构以及实现其功能。
VisualBasic是一个面向对象的图形界面应用程序开发环境,利用它可开发面向对象的基于Win-dows的应用程序[7]。由于VisualBasic充分利用了Windows的窗口资源,因而开发应用程序的用户界面美观、简洁。本系统中所使用的菜单、按钮和结果显示等功能方式均以模块化开发实现,有利于系统的后续开发升级。
系统应用过程:首先,按照系统数据库中数据表的字段格式对车站、区间段和监测点进行统一编号、命名和归类,并根据实际情况确定测点属性值,将整理后的测段信息与测点属性数据录入数据库;然后,通过系统的接口程序从外业观测电子手簿下传各期原始观测资料,对其进行预处理后将满足要求的成果数据录入数据库;最后,对监测数据进行管理和处理计算,分析地铁隧道结构变形情况。该系统在某城市地铁监测中得到了很好的应用,发挥了较大的作用,实际应用表明:
1)监测数据管理的效率得到了明显的提高。应用系统后,数据处理分析所花时间从原先手工进行所需的7d至8d缩短为1d至2d。
2)系统计算准确、成果可靠。
3)系统功能完善,操作简单,界面友好、美观。结 论
地铁隧道结构变形监测数据管理系统是结合地铁隧道结构变形监测实际情况进行设计和开发的具有较高的实用价值。
1)系统应用了先进的ADO数据库开发技术实现了数据库与系统的有机结合,使Access数据库与VisualBasic语言的优势得到了最大的发挥,值得类似系统借鉴。
2)通过实践应用表明该系统功能完善、方便实用、计算准确、数据成果可靠,能够较好地满足实际应用需求,大大减少了数据管理工作量,提高了效率。
3)系统中测量内外业一体化的实现为地铁隧道自动化变形监测系统的开发积累了一定的经验。
4)系统开发运行的成功为今后地铁隧道结构变形监测数据处理与分析系统以及地铁安全监测专家系统的研究开发奠定了基础。
参考文献
[1]国家质量技术监督局,中华人民共和国建设部.地下铁道、轻轨交通工程测量规范[S].北京:中国计划出版社,2000:64-70.[2]于来法.论地下铁道的变形监测[J].测绘通报,2000(5):13-15.[3]郝传才.地铁施工监测信息系统[J].广东建材,2005(10):83-85.[4]王浩,葛修润,邓建辉,等.隧道施工期监测信息管理系统的研制[J].岩石力学与工程学报,2001(20):1684-1686.[5]TORYK.Multiple-Surveying-RobotSystemforTunnel DeformationMonitoring[EB/OL].http://www.ntu.edu.sg/cee/research/bulletin/2003_2004/pdf/SpatialInfo.pdf.[6]BASSETT,R.H,KIMMANCE,J.P,RASMUSSEN,C.Automatedelectroleveldeformationmonitoring
systemfortunnels[A].ProceedingsofSPIE-TheInternationalSo-cietyforOpticalEngineering[C],17thInternationalCon-ferenceonOpticalFibreSensors,London,2005,London:ThomasTelfordServicesLtd,London,England,2005:168-171.[7]赵斯思.VisualBasic数据库编程技术与实例[M].北京:人民邮电出版社,2004.[8]陈志泊,李冬梅,王春玲.数据库原理及应用教程[M].北京:人民邮电出版社,2002.
第五篇:隧道工程课程设计及论文
《隧道工程》课程设计及论文
1、以青岛拟建第二条海底隧道为例,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究
2、以山东科技大学日益增多的校园汽车所带来的问题为研究背景,拟规划校园交通隧道,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究(可以包括地下停车场)
3、以更好的发展西海岸经济新区、加强各地域之间的联系为例,来规划小珠山隧道,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究
4、从各个方面比较青岛海底隧道和厦门翔安海底隧道的异同点(包括选址、地质情况、埋深、施工方法、造价、施工工期、断面形式、路面形式、通风形式、照明、内装、以及通车及收费系统情况等),并且要写出你自己的体会,要求:
1、每人一题,可以是一个题目的某一个方面,也可以是多个方面;
2、可以是设计,也可以是研究;
3、字数:3000字以上;
4、格式:以科技论文的格式,具体见附录