青岛版数学八年级下册10.2《一次函数和它图象》教案[推荐阅读]

时间:2020-11-28 07:20:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《青岛版数学八年级下册10.2《一次函数和它图象》教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《青岛版数学八年级下册10.2《一次函数和它图象》教案》。

第一篇:青岛版数学八年级下册10.2《一次函数和它图象》教案

《一次函数和它的图象》教案 教学目标 1.使学生理解待定系数法;

2.能用待定系数法求一次函数,用一次函数表达式解决有关现实问题. 3.感受待定系数法是求函数解析式的基本方法,体会用“数”和“形”结合的方法求函数式;

教学重点 会用待定系数法求一次函数的关系式.教学难点 学会利用一次函数的解析式、性质、图象解决实际问题.教学过程 一、创设情境 一列高铁列车自北京站出发,运行10km后,便以300km/m的速度匀速行驶.如果从运行10km后开始即使,你能写出列车离开北京的距离S(km)与时间t(h)的之间的函数表达式吗? 上节提到的函数y=x-1,y=2x-1以及上题的S=10+300t等函数,这些函数有什么共同特征?一般形式是什么? 形如y=kx+b(k≠0)的函数叫做x的一次函数,其中k与b是常数.特别地,当b=0时,称y=kx是x的正比例函数,k叫做比例系数.例3.铜的质量M与体积V成正比例关系.已知当V=5cm3时,M=44.5g,求:

(1)铜的质量M(g)关于体积V(cm3)的函数表达式,以及铜的密度.(2)体积为0.3dm3的铜棒的质量.解(1)∵铜的质量M与体积V成正比例关系,∴设M=kV,当V=5cm3时,M=44.5g,即44.5=5k,解得:k=8.9.又∵M=V,∴=8.9g/cm3.(2)当V=0.3dm3时,M=2.67g.一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢? 如果知道一个一次函数,当自变量x=4时函数值y=5;

当x=5时,y=2.写出函数表达式并画出它的图象.解 因为y是x的一次函数,设其表达式为 由题意,得 解方程组,得 k=-3,b=17.所以,函数表达式为 图象如图中的直线.例3 已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式. 考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系? 二、探究归纳 上题可作如下分析:

已知y是x的函数关系式是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b的值.而两个已知条件就是x和y的两组对应值,也就是当x=0时,y=6;

当x=4时,y=7.2.可以分别将它们代入函数式,转化为求k与b的二元一次方程组,进而求得k与b的值. 解 设所求函数的关系式是y=kx+b(k≠0),由题意,得 解这个方程组,得 所以所求函数的关系式是y=0.3x+6.(其中自变量有一定的范围)讨论:1.本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题. 2.这个问题是与实际问题有关的函数,自变量往往有一定的范围. 这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法.三、交流反思.本节课,我们讨论了一次函数解析式的求法. 1.求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;

2.用一次函数解析式解决实际问题时,要注意自变量的取值范围. 3.求两个一次函数图象的交点坐标即以两解析式为方程的方程组的解. 四、总结. 这节课你学会了什么? 《机关公文常用词句集锦》一一 1、常用排比:

新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;

重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;

法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;

热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;

政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;

出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;

活动力、控制力、影响力、创造力、凝聚力、战斗力;

找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;

必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。

审判工作有新水平、队伍建设有新境界、廉政建设有新举措、自身建设有新发展、法院管理有新突破;

不动摇、不放弃、不改变、不妥协;

政治认同、理论认同、感情认同;

是历史的必然、现实的选择、未来的方向。

多层次、多方面、多途径;

要健全民主制度,丰富民主形式,拓宽民主渠道,依法实行民主选举、民主决策、民主管理、民主监督 2、常用短语:

立足当前,着眼长远,自觉按规律办事 抓住机遇,应对挑战:量力而行,尽力而为 有重点,分步骤,全面推进,统筹兼顾,综合治理,融入全过程,贯穿各方面,切实抓好,减轻,扎实推进,加快发展,持续增收,积极稳妥,落实,从严控制严格执行,坚决制止,明确职责,高举旗帜,坚定不移,牢牢把握,积极争取,深入开展,注重强化,规范,改进,积极发展,努力建设,依法实行,良性互动,优势互补,率先发展,互惠互利,做深、做细、做实、全面分析,全面贯彻,持续推进,全面落实、实施,逐步扭转,基本形成,普遍增加,基本建立,更加完备(完善),明显提高(好转),进一步形成,不断加强(增效,深化),大幅提高,显着改善(增强),日趋完善,比较充分。

3、常用动词:

推进,推动,健全,统领,协调,统筹,转变,提高,实现,适应,改革,创新,扩大,加强,促进,巩固,保障,方向,取决于,完善,加快,振兴,崛起,分工,扶持,改善,调整,优化,解决,宣传,教育,发挥,支持,带动,帮助,深化,规范,强化,统筹,指导,服务,健全,确保,维护,优先,贯彻,实施,深化,保证,鼓励,引导,坚持,深化,强化,监督,管理,开展,规划,整合,理顺,推行,纠正,严格,满足,推广,遏制,整治,保护,健全,丰富,夯实,树立,尊重,制约,适应,发扬,拓宽,拓展,规范,改进,形成,逐步,实现,规范,坚持,调节,取缔,调控,把握,弘扬,借鉴,倡导,培育,打牢,武装,凝聚,激发,说服,感召,尊重,包容,树立,培育,发扬,提倡,营造,促进,唱响,主张,弘扬,通达,引导,疏导,着眼,吸引,塑造,搞好,履行,倾斜,惠及,简化,衔接,调处,关切,汇集,分析,排查,协商,化解,动员,联动,激发,增进,汲取,检验,保护,鼓励,完善,宽容,增强,融洽,凝聚,汇集,筑牢,考验,进取,凝聚,设置,吸纳,造就 4、常用名词 关系,力度,速度,反映,诉求,形势,任务,本质属性,重要保证,总体布局,战略任务,内在要求,重要进展,决策部署,结合点,突出地位,最大限度,指导思想,科学性,协调性,体制机制,基本方略,理念意识,基本路线,基本纲领,秩序,基本经验,出发点,落脚点,要务,核心,主体,积极因素,水平,方针,结构,增量,比重,规模,标准,办法,主体,作用,特色,差距,渠道,方式,主导,纽带,主体,载体,制度,需求,能力,负担,体系,重点,资源,职能,倾向,秩序,途径,活力,项目,工程,政策,项目,竞争力,环境,素质,权利,利益,权威,氛围,职能,作用,事权,需要,能力,基础,比重,长效机制,举措,要素,精神,根本,地位,成果,核心,精神,力量,纽带,思想,理想,活力,信念,信心,风尚,意识,主旋律,正气,热点,情绪,内涵,管理,格局,准则,网络,稳定,安全,支撑,局面,环境,关键,保证,本领,突出,位置,敏锐性,针对性,有效性,覆盖面,特点,规律,阵地,政策,措施,制度保障,水平,紧迫,任务,合力。

5、其它:

以求真务实的态度,积极推进综合调研制度化。

以为领导决策服务为目的,积极推进xx正常化。

以体现水平为责任,积极推进xx工作程序化。

以畅通安全为保障,积极推进xx工作智能化。

以立此存照为借鉴,积极推进xx工作规范化。

以解决问题为重点,积极推进xx工作有序化。

以服务机关为宗旨,积极推进xx服务优质化 以统筹兼顾为重点,积极推进xx工作常态化。

以求真务实的态度,积极参与综合调研。

以为领导决策服务为目的,把好信息督查关。

以体现xx水平为责任,进一步规范工作。

以畅通安全为保障,全力指导机要保密工作。

以立此存照为借鉴,协调推进档案史志工作。

以安全稳定为基础,积极稳妥做好信访工作。

以服务机关为宗旨,全面保障后勤服务。

以整体推进为出发点,协调做好xx工作。

以周到服务为前提,xx工作迅速到位。

以提高服务水平为目标,开始推行xx。

一.求真务实,积极推进xx工作制度化 二.建立体系,积极推进xx工作正常化。

三.规范办文,积极推进xx工作程序化。

四.各司其职,积极推进xx工作有序化。

五.注重质量,积极推进xx服务规范化。

六.统筹兼顾,积极推进xx工作正常化。

一是求真务实,抓好综合调研。

二是提高质量,做好信息工作。

三是紧跟进度,抓好督查工作。

四是高效规范,抓好文秘工作。

五是高度负责,做好保密工作。

六是协调推进,做好档案工作。

七是积极稳妥,做好信访工作。

八是严格要求,做好服务工作。

一、创思路,订制度,不断提高服务水平二、抓业务,重实效,开创工作新局面(一)着眼全局,充分发挥参谋助手作用(二)明确分工,充分搞好统筹协调工作 三、重协调,强进度,信息化工作有新成果 四、抓学习,重廉洁,自身素质取得新提高 一、注重学习,自身素质取得新提高 二、围绕中心,不断开创工作新局面 1.着眼全局,做好辅政工作。

2.高效规范,做好文秘工作。

3.紧跟进度,做好督查工作。

4.提高质量,做好信息工作。

5.周密细致,做好协调工作。

6.协调推进,做好档案工作。

一是建章立制,积极推进xx管理制度化。

二是规范办文,积极推进xx工作程序化。

三是建立体系,积极推进xx督查正常化。

四是注重质量,积极推进xx工作规范化。

五是各司其职,积极推进xx工作有序化。

首先要树立正确的群众利益观,坚持把实现好、维护好、发展好最广大人民群众的根本利益作为促进社会和谐的出发点,在全社会形成和谐社会人人共享的生动局面。

其次,是要树立正确的维护稳定观,坚持把确保稳定作为人民法院促进社会和谐的生命线。

第三,是要树立正确的纠纷解决观,坚持把调判结合作为有效化解不和谐因素、增加和谐因素的有效途径。

第四,是要树立正确的司法和谐观,最大限度地实现法律效果与社会效果的高度统一。

机关公文常用词汇集锦 动词一字部:

抓,搞,上,下,出,想,谋 动词二字部:

分析,研究,了解,掌握,发现,提出,推进,推动,制定,出台,完善,建立,健全,加强,强化,增强,促进,加深,深化,扩大,落实,细化,突出,建设,营造,开展,发挥,发扬,创新,转变,发展,统一,提高,提升,保持,优化,召开,举行,贯彻,执行,树立,引导,规范,整顿,服务,协调,沟通,配合,合作,支持,加大,开拓,拓展,巩固,保障,保证,形成,指导 名词:

体系,机制,体制,系统,规划,战略,方针,政策,措施,要点,重点,焦点,难点,热点,亮点,矛盾,问题,建设,思想,认识,作风,整治,环境,秩序,作用,地方,基层,传统,运行,监测,监控,调控,监督,工程,计划,行动,创新,增长,方式,模式,转变,质量,水平,效益,会议,文件,精神,意识,服务,协调,沟通,力度,领域,空间,成绩,成就,进展,实效,基础,前提,关键,保障,动力,条件,环节,方法,思路,设想,途径,道路,主意,办法,力气,功夫,台阶,形势,情况,意见,建议,网络,指导,指南,目录,方案 形容词一字部:

多,宽,高,大,好,快,省,新 形容词二字部:

持续,快速,协调,健康,公平,公正,公开,透明,富强,民主,文明,和谐,祥和,优良,良好,合理,稳定,平衡,均衡,稳健,平稳,统一,现代 副词一字部:

狠,早,细,实,好,很,较,再,更 副词二字部:

加快,尽快,抓紧,尽早,整体,充分,继续,深入,自觉,主动,自主,密切,大力,全力,尽力,务必,务求,有效 副词三字部:进一步 后缀:化,型,性 词组:

统一思想,提高认识,认清形势,明确任务,加强领导,完善机制,交流经验,研究问题,团结协作,密切配合,真抓实干,开拓进取,突出重点,落实责任,各司其职,各负其责,集中精力,聚精会神,一心一意,心无旁骛,兢兢业业,精益求精,一抓到底,爱岗敬业,求真务实,胸怀全局,拓宽视野。

第二篇:一次函数图象翻转课堂教案

一次函数图象翻转课堂教案

一.教材分析

1.教材的地位和作用

本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的数学图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。2.教学目标 知识与能力:

(1)能用“两点法”画出一次函数的图象。(2)结合图象,理解直线y=kx+b(k,b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

过程与方法:

通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。情感态度与价值观

学生能够结合具体情境体会数形结合的数学思想。3.教学重难点

(1)重点:用“两点法”画出一次函数的图象。(2)难点:理解直线y=kx+b(k,b是常数,k≠0)常数k和b的取值对于直线的位置的影响。二.教学过程

(一)课下知识传授

1.明确目标——准备教学视频(1)明确教学目标

课下自主学习阶段的教学目标:能够利用电子设备进行一次函数图像与性质相关知识的学习,在动手操作中逐步体会一次函数图象特征,提高对信息技术环境中新教学模式的认识,在课下自主探究过程中体验数学的乐趣。课上协作内化阶段的教学目标:通过自主探究,小组协作交流深入研究一次函数的图象特征,加深对一次函数y=kx+b(k,b是常数,k≠0)中不同的k和b函数图象的关系的进一步理解,对一次函数系数的各种情况下的图象有一个整体的掌握。在生生互动与师生互动中,激发学生数学学习兴趣,培养学生数学探究精神,提高学生自主学习和协作学习能力。(3)创建教学视频 视频内容包括:①举例通过列表描点连线的步骤画出一个一次函数的图象。②讨论一次函数的图象都是一条直线吗?③找出画一次函数的简便方法(两点法)。④请同学们自己画出所要求的八个一次函数的图象,然后仔细观察分析一次函数图象特征。2.自主学习——记忆领会概念内容

(1)观看教学视频

在教师的引导下,学生观看教学视频实现对一次函数图象的感知与记忆。与以往在课堂中听课不同的是,学生在观看教学视频时可以根据自己的学习情况,自行安排学习进度,多次暂停、回放并随时做笔记完成课前练习。(3)完成练习

完成教学视频中的相关练习,在掌握两点法画一次函数图象的基础上,进一步观察一次函数的图像特征。

(二)课上知识内化

1.协作探索——发现一次函数图像特征(1)确定问题

首先一次函数的图像可以用“两点法”画出,那么一般选用哪两点比较容易?学生根据一次函数图象的两点法画法画出习题中的一次函数图象,观察对于k和b的正负对函数图像的影响,进一步试着总结不同的k和b所对应的图形大致的位置。(2)自主探索

在课堂上,教师基于探究性问题为学生创建个性化学习环境,使学生自主探究,教师则通过“1对1”教学方式,帮助学生解决在理解教学内容及完成作业中所遇到的困惑,开展高质量的有效课堂学习来完成知识内化的过程。(3)小组讨论

基于问题,学生以学习小组为单位进行讨论,小组成员人数通常控制在5人以内。正对上面提出的问题,组内采用对话、商讨、辩论等形式对问题进行探究。学生在组内发表个人看法,与成员进行交流,总结一次函数图像的特征。2.交流展示——综合评价形成体系(1)成果展示

经过自主探究、协作学习之后,学生把自己或小组在学习活动中得出的一次函数图像特征的相关结论进行展示。个人或组间通过多种方式在班级进行表达、交流最后互相补充,归纳总结出一次函数图象特征:一次函数y=kx+b(k,b是常数,k≠0)其中k决定了函数图象是上升的还是下降的,具体的说:当k>0时,图像呈上升趋势;当k<0时,函数呈下降趋势。其中的b决定了函数图象与y轴的交点(0,b),当b>0时,函数图象与y轴交于正半轴;当b<0时, 函数图象与y轴交于负半轴;当k=0时,函数图像过原点。(2)反馈评价

通过学生的展示,纠正其中的错误的描述,补充遗漏点,最终将学生得出的结论与学生一起制成表格,在此过程中回顾已得出的结论,加深对一次函数图象特征的理解,通过进一步的总结,将一次函数图象特征全面掌握。

第三篇:《一次函数图象的应用》教案

19.2.2 一次函数

的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?

3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,写出当x≥3时该图象的函数关系式;(2)某人乘坐2.5 km,应付多少钱?(3)某人乘坐13 km,应付多少钱?(4)若某人付车费30.8元,出租车行驶了多少千米?

三、运用新知:

为鼓励居民节约用水,出台了新的用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分按每立方米2元计算).现某户居民某月用水x立方米,水费为y元,(1)求y与x的函数关系式.(2)用图象表示出y与x的函数关系.四、能力提升:

如图点P按ABCM的顺序在边长为l的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,APM的面积为y,则函数y的大致图象是()

五、当堂反馈(基础题):

1、课本练习

2、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后:(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间是多长?

3、某洗衣机在洗涤衣服时经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如折线图所示.根据图象解答下列问题(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19 L,①求排水时,y与x之间的关系式.

②如果排水时间预定为2min,求排水2min时洗衣机中剩下的水量.

4.(提高题):北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800 元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)写出总运输费用与北京运往重庆x台之间的函数关系式;(2)若总运费为8 400元,上海运往汉口应是多少台?

【课后反思】

第四篇:新人教版八年级数学下册《19.1.2函数的图象》教案

新人教版八年级数学下册《19.1.2函数的图象

(1)》教案

一、创设情境

如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了. 我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.

二、探究归纳

问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?

解因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来. 问题2在教室里,怎样确定一个同学的座位?

解例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.

问题3要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:

(1)孔的圆周上的点与AB边的最短距离为5mm,(2)孔的圆周上的点与AD边的最短距离为15mm.

第 1 页 试问:钻孔时,钻头的中心放在铁板的什么位置?

分析圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以半径为5mm,所以圆心O到AD边距离为20mm,圆心O到AB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).

在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangledcoordinatessystem).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点. 在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限?

第 2 页

第五篇:八年级数学一次函数教案_3

承 留 二 中

师 生 共 用 学 教 案

八年级数学学教案

姓名

学习目标:

1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.

2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式. 3能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力. 学习重点:能根据两个条件确定一个一次函数。

学习难点: 从各种问题情境中寻找条件,确定一次函数的表达式。

学习过程

一.课前预习,细心认真。

一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?

1.已知一个一次函数当自变量x=-2时,函数值y=-1,当x=3时,y=-3.能否写出这个一次函数的解析式呢?

根据一次函数的定义,可以设这个一次函数为:y=kx+b(k≠0),问题就归结为如何求出k与b的值.

由已知条件x=-2时,y=-1,得-1=-2k+b. 由已知条件x=3时,y=-3,得-3=3k+b. 两个条件都要满足,即解关于x的二元一次方程

解得

所以,一次函数解析式为

2若一次函数y=mx-(m-2)过点(0,3),求m的值.

分析 考虑到直线y=mx-(m-2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程. 解答过程如下:

这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法 二.小试身手,我是最棒的!

3.已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值. 分析 1.图象经过点(-1,1)和点(1,-5),即已知当x=-1时,y=1;x=1时,y=-5.代入函数解析式中,求出k与b.

2.虽然题意并没有要求写出函数的关系式,但因为要求x=5时,函数y的值,仍需从求函数解析式着手. 解答过程如下:

4.某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.

(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?

分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析式求出待定系数即可.

5.已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.

三.当堂检测,我能做全对。

6.根据下列条件求出相应的函数关系式.(1)直线y=kx+5经过点(-2,-1);

(2)一次函数中,当x=1时,y=3;当x=-1时,y=7.

7.写出两个一次函数,使它们的图象都经过点(-2,3).

8.一次函数y=kx+b(k≠0)的图象经过点(3,3)和(1,-1).求它的函数关系式.学(教)后感:

下载青岛版数学八年级下册10.2《一次函数和它图象》教案[推荐阅读]word格式文档
下载青岛版数学八年级下册10.2《一次函数和它图象》教案[推荐阅读].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2017八年级数学一次函数教案

    §11.2.2 一次函数(一) 教学目标 (一)教学知识点 1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系. 3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次......

    八年级数学下册一次函数教学设计

    八年级数学下册一次函数教学设计 教学目标 1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。 2、能根据问......

    八年级数学下册 17.2.2 函数的图象教案1 (新版)华东师大版

    函数的图象 【教学内容】课本36----38页内容。 【教学目标】 知识与技能 1.掌握用描点法画出一些简单函数的图象;会列表、描点、连线; 2.理解解析法和图象法表示函数关系的相......

    八年级数学下册19.2一次函数同步练习

    人教版八年级数学下册19.2一次函数同步练习一、选择题1.已知正比例函数图像经过点,则此函数图像必经过A.B.C.D.2.如图所示,一次函数的图像可能是A.B.C.D.3.无论m为何实数,直线与的交点不......

    一次函数的性质和图象 电子教案(5篇范文)

    一次函数的图像和性质 石家庄市第五中学南海平课型:新授课 教材:冀教版八年级《数学》下册第六章第二节第二课时 教学目标: 一、知识与技能目标 (1)能根据正比例函数的图像和函......

    《一次函数图象的应用》优质课比赛教案(精选五篇)

    《一次函数图象的应用》优质课比赛教案 1、一次函数的概念 若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)特别地,当b......

    八年级数学人教版下册19.2一次函数同步测试题

    19.2一次函数同步测试题班级:_____________姓名:_____________一、选择题(本题共计8小题,每题3分,共计24分,)1.下列函数关系式中,y是x的正比例函数的是A.y=2x-1B.y=-xC.y=2(x-1)D.y=......

    八年级数学人教版下册:19.2一次函数同步练习

    人教版八年级下册:19.2一次函数同步练习一、选择题1.函数图象与x轴的交点坐标为A.(-4,0)B.(2,0)C.(0,-4)D.(0,2)2.一次函数的图象经过A.第1、2、3象限B.第2、3、4象限C.第1、2、4象限D.第1、3、4象限3......