第一篇:因式分解教案锦集
因式分解教案锦集五篇
作为一位不辞辛劳的人民教师,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。那么应当如何写教案呢?以下是小编收集整理的因式分解教案5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
因式分解教案 篇1教学目标
教学知识点
使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。
潜力训练要求。
透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。
情感与价值观要求。
透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
教学重点
1、理解因式分解的好处。
2、识别分解因式与整式乘法的关系。
教学难点透过观察,归纳分解因式与整式乘法的关系。
教学方法观察讨论法
教学过程
Ⅰ、创设问题情境,引入新课
导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、讲授新课
1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
993-99=99×98×1002、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。
3、做一做
(1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根据上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
下面我们一齐来总结一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法与分解因式的联系和区别
ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。
6。例题下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、课堂练习
P40随堂练习
Ⅳ、课时小结
本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
因式分解教案 篇2教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:
(1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。
(3)。要分解到不能分解为止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例题讲解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知识应用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)24、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?
五、拓展应用
1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。
五、课堂小结
今天你对因式分解又有哪些新的认识?
因式分解教案 篇3课型 复习课 教法 讲练结合教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点 掌握用提取公因式法、公式法分解因式
教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体 学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式:;
完全平方公式:;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是()
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2.下列各题中,分解因式错误的是()
3.列多项式能用平方差公式分解因式的是()
4.分解因式:x2+2xy+y2-4 =_____
5.分解因式:(1);
(2);(3);
(4);(5)以上三题用了 公式
二:【经典考题剖析】
1.分解因式:
(1);(2);(3);(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意,④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2.分解因式:(1);(2);(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3.计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的`和。
4.分解因式:(1);(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,5.(1)在实数范围内分解因式:;
(2)已知、、是△ABC的三边,且满足,求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证,从已知给出的等式结构看出,应构造出三个完全平方式,即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1.若 是一个完全平方式,那么 的值是()
A.24 B.12 C.12 D.24
2.把多项式 因式分解的结果是()
A.B.C.D.3.如果二次三项式 可分解为,则 的 值为()
A.-1 B.1 C.-2 D.2
4.已知 可以被在60~70之间的两个整数整除,则这两个数是()
A.61、63 B.61、65 C.61、67 D.63、65
5.计算:19982002=,=。
6.若,那么 =。
7.、满足,分解因式 =。
8.因式分解:
(1);(2)
(3);(4)
9.观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来:。
10.已知 是△ABC的三边,且满足,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。④
试问:以上解题过程是否正确:;若不正确,请指出错在哪一步?(填代号);错误原因是;本题结论应为。
四:【课后小结】
布置作业 地纲
因式分解教案 篇4教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab3、根据乘法公式进行计算:
(1)(x+3)(x-3)=(2)(2y+1)(2y-1)=(3)(a+b)(a-b)=
二、合作探究 学习新知
(一)猜一猜:你能将下面的多项式分解因式吗?
(1)=(2)=(3)=
(二)想一想,议一议:
观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)()(2)()(3)()(4)=()(5)36a4=()2(6)0.49b2=()2(7)81n6=()2(8)100p4q2=()2
(四)做一做:
例3 分解因式:
(1)4x2-9(2)(x+p)2-(x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1)x4-y4(2)a3b-ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解教案 篇5教学目标:
1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)
教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】(1)因式分解与整式乘法是相反方向的变形.例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析 师生互动
例1 用提公因式法将下列各式因式分解.(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结 运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).(3)因式分解最后如果有同底数幂,要写成幂的形式.学生做一做 把下列各式分解因式.(1)(2a+b)(2a-3b)+(2a+5b)(2a+b);(2)4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.探究交流
下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.例2 把下列各式分解因式.(1)(a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.分析:本题旨在考查用完全平方公式分解因式.学生做一做 把下列各式分解因式.(1)(x2+4)2-2(x2+4)+1;(2)(x+y)2-4(x+y-1).综合运用
例3 分解因式.(1)x3-2x2+x;(2)x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式.小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式.是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k=.分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).学生做一做 若x2+(k+3)x+9是完全平方式,则k=.课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.各项有“公”先提“公”,首项有负常提负,某项提出莫漏“1”,括号里面分到“底”。
自我评价 知识巩固
1.若x2+2(m-3)x+16是完全平方式,则m的值等于()
A.3 B.-5 C.7.D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是()
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2=.4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.5.把多项式1-x2+2xy-y2分解因式
思考题 分解因式(x4+x2-4)(x4+x2+3)+10.
第二篇:因式分解教案
因式分解教案
教学内容 乐吉凤 2005-12-23 12:15:23 自己撰写
因式分解的概念及提公因式法分解因式 教学目标
1:知识与技能目标:使学生了解因式分解的意义,理解因式分解与整式乘法的联系与区别;使学生理解并熟练运用提公因式法分解因式。2:过程与方法目标:培养学生全面观察问题、分析问题和逆向思维的能力。
3:情感与态度目标:通过学生自行探求解题途径,培养学生的科学精神和创新意识。教学重点和难点
教学重点:因式分解的概念及提公因式法。教学难点:正确找出多项式各项的公因式。教学方法选择与分析
1:利用知识的迁移,启发学生的思维。
2:采用自主探究式教学方式,培养学生的创新能力。教学过程与设计 第一个环节:复习与激趣 教师活动:
1:出示提问题:乘法对加法的分配律用字母怎样表示?
2:出示学生讨论题:630能被那些数整除?并说说你是怎么想的。3:出示猜想题:既然有些数能分解因数,那么类似地有些多项式可以分解成几个整式的积吗?请同学们猜想。学生活动:
1:对已有知识加深印象,为学习新知识作准备。2:分组讨论,各抒己见,大胆猜想。设计意图:
1:完整学生的知识点。2:激发学生的学习兴趣和求知欲。第二个环节:教学因式分解的概念 教师活动:
1:出示探究题:请同学们把下列多项式写成整式的积的形式(投影)(1)x2+x=_(2)x2-1=_ 2:引导学生分析上面式子的特点,归纳因式分解的概念。
定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解。也叫做把这个多项式分解因式。
3:引导学生分析整式乘法与因式分解的联系与区别。联系:都是由几个相同的整式组成的等式。
区别:相同整式的位置比同,两者是相反的恒等变形。例1 下列各式那些是因式分解?
(1)x2+x=x(x+1)(2)a(a-b)=a2-ab(3)(a+3)(a-3)=a2-9(4)a2-2a+1=a(a-2)+1 学生活动: 1:完成探究题。
2:分组讨论探究题中式子的特点,试说出因式分解的定义。3:分组讨论因式分解与整式乘法的联系与区别。4:完成例1,小组派代表投影展示。
设计意图:培养学生自主学习,积极探究的精神、合作交流的意识和分析归纳的能力。
第三个环节:教学提公因式法分解因式 教师活动:
1:出示问题:多项式ma+mb+mc有什么特点?
2:指导学生归纳公因式的概念,强调公因式是各项都有的公共因式。例2 指出下列多项式的公因式:(投影)(1)a2-a(2)5a2b-ab2(3)4m2np-2mn2q(4)a2b-ab2 强调找公因式的方法:公因式的系数应取最大公约数;字母取相同字母且字的指数取最低次数。3:引入提公因式法分解因式。
整式乘法:m(a+b+c)=ma+mb+mc 逆变形得到 因式分解:ma+mb+mc=m(a+b+c)说明:多项式ma+mb+mc各项都有的公因式m可以提到括号外面,写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法。定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式,这种因式分解的方法叫做提公因式法。
4:提公因式法分解因式典型举例。例3 把下列各式分解因式:
(1)8a3b2-12ab3c(2)3x2-6xy+x(3)2a(b+c)-3(b+c)说明:1)提公因式法分解因式的步骤:第一步:找出公因式。第二步:提公因式。
2)当多项式的一项是公因式时,这项应看成它与1的积,提公因式后剩下的是1,不能漏掉。
3)公因式不仅可以是单项式也可以是多项式,找公因式时要注意观察。5: 提问:如何检查因式分解是否正确? 学生活动:
学生在教师启发下,思考探究与教师共同完成例3,掌握找公因式的方法和提公因式法分解因式的方法及应注意的问题。设计意图:
1:注重师生互动与知识落实的平衡。2:让学生学会发现与归纳。第四个环节:课堂巩固练习1.把下列各式分解因式:
(1)8m2n+2mn(2)12xyz-9x2y2(3)2a(y-z)-3b(z-y)(4)p(a2+b2)-q(a2+b2)2.先分解因式,再求值。4a2(x+7)-3(x+7),其中a=5,x=3 学生独立完成,教师巡回辅导,反馈纠错。
第五个环节::未来数学家论坛及小节 1.这节课你感触最深的是。。。。2.这节课你学到了那些新知识、新方法? 3.。。。。。。。。4.小节:
(1)因式分解的概念
(2)因式分解与整式乘法的联系与区别(3)公因式的意义及找公因式的方法(4)提公因式法分解因式及应注意的问题
第三篇:因式分解教案
14.4 因式分解
教学目标
1.了解因式分解的意义,并能够理解因式分解与多项式乘法的区别与联系。
2.会用提公因式法和公式法进行因式分解(直接用公式不超过两次)。
3.树立学生全面认识问题、分析问题的思想,提高学生的观察能力、逆向思维能力。
教学重难点
重点:因式分解的概念及用提公因式法和公式法分解因式。
难点:正确的找出多项式各项的公因式和如何根据公式的特点进行因式分解。
教学过程
一、知识回顾。
1.完成下列各题:
(1)m(a+b+c)=_____;
(2)(a+b)(a-b)=_______;
(3)(a+b)=_____。
2.根据上面的计算,你会做下面的填空吗?
(1)ma+mb+mc=()();
(2)a-b=()();
(3)a2+2ab+b=()。
二、引导观察。
观察以上两组题目有什么不同点?又有什么联系?
(让学生讨论分析井回答。引导学生从等式的左右两边找异同点,学生不难发现第1题是多项式的乘法,而第2题是把一个多项式化成了几个整式的积,它们之间的运算是相反的。从而引出课题。)
三、新知识的学习。
1.你能根据上面的分析说出什么是因式分解吗?
(把一个多项式化为几个整式的乘积形式,这就是因式分解。)
2.练习。
(1)课本第89页练习的第1题。
3.对下列多项式进行因式分解:
(学生分组完成下列各题,从中得出因式分解的方法。)
(1)3a+3b
(2)3a-9ab; 2
22222
(3)x-9y
(4)x-4xy+4y
(5)x-x+
4.因式分解的方法。
(1)提取公因式法。
你会确定公因式吗?
(讲解公因式的定义,系数是各系数的最大公约数,字母是相同字母中指数最低的。)
教师举例让学生找公因式。
(2)公式法。
四、举例及应用。
1.例1 对下列多项式进行因式分解:
(1)- 5a+ 25a;
(2)3a-9ab;
(3)25x-16y;
(4)x+4xy+y。
2、练习
课本第89页练习第2题
3、例2 对下列多项式进行因式分解
(1)4xy+4xy+xy
(2)3x-12xy
五、课堂小结
本节课你学到了什么?是否还有不明白的地方?
注意:在进行多项式的因式分解时,要先提取公因式。
六、布置作业
课本89习题14.4第1题(1)(2)(4)(5)(7),第2题。3223
222222222222
第四篇:因式分解教案
《用完全平方公式分解因式》教案设计
【教学目标】:
1.弄清完全平方公式的特点,能较熟练地应用公式因式分解。
2.经历探究用完全平方公式分解因式的过程,进一步理解完全平方公式的特点,体会整式乘法与因式分解之间的联系。
3.通过思考探究并归纳出因式分解的又一方法:逆用完全平方公式,得到a2±2ab+b2=(a±b)2 4.在探究完全平方公式的特点和运用完全平方公式分解因式的活动中,敢于发表自己的观点,获得成功的体验,培养耐心和自信心。
【教学重点】:弄清完全平方公式的特点,运用完全平方公式分解因式。【教学难点】:完全平方公式因式分解方法的灵活运用 【教学方法】:
启发式教学与探究式教学相结合 【教学过程】: 活动一:复习引入
1.运用公式计算下列各式:
(1)(x+3)(2)(2x-1)(3)(x+2y)
2.填空:
(1)x+6x+9=()()(2)4x4x+1=()()(3)x+4xy+4y=()()(4)x+2x+1=()()(设计意图:通过设计计算题,使学生运用公式计算,起到复习铺垫的作用;填空题的设计目的是使学生通过计算后发现乘法公式与因式分解的联系。)
活动二:探究新知(引导学生观察这两个多项式的特征,学生经过观察、思考,弄清这两个多项式的特点)1.你能将多项式a+2ab+b与a-2ab+b分解因式吗?这两个多项式有什么特点?
(设计意图:让学生经历观察、归纳、概括的过程,理解完全平方公式的特点,理解运用完全平方公式进行分解因式的方法,发展学生的逆向思维。)
2.下列多项式是不是完全平方式?为什么?(学生独立思考,小组交流,教师通过提问了解学生理解完全平方式的情况。)
(1)x+4x+4(2)x-10x+25(3)4x-4x+1(4)x+xy+y22 2
222
22_2
(4)(x+1)
(5)-x+x(6)0.25x+x+1
22(设计意图:通过讨论交流,熟悉公式结构的特征。)
活动三:例题解析 例1:分解因式:(1)16x+24x+9(2)-x+4xy-4y
(设计意图:掌握运用乘法公式进行分解因式的方法。)
例2:分解因式:(先让学生进行分解因式,然后归纳出分解因式的一般步骤和方法:①有公因式的先提公因式,再运用公式进行分解;②多项式可以看成一个整体。)(1)3ax+6axy+3ay(2)(a+b)-12(a+b)+36
(设计意图:掌握分解因式的方法步骤。)
例3:已知4y+my+9是完全平方式,则m=________。(设计意图:进一步掌握完全平方公式的特点。)活动四:巩固提升
分解因式:(学生独立完成,师巡视发现问题及时纠正。)(1)x+4x+4(2)x2x+1(3)x+4xy+4y
(4)5x+10xy+5y(5)(a-b)-12(a-b)+36(6)x-9
(设计意图:巩固,形成能力。)活动五:课堂小结
1.本节课你学到了什么知识? 2.因式分解的步骤和方法是什么? 检测反馈
利用完全平方公式对下列多项式因式分解:
(1)a2-10a+25;(2)4a2+12ab+9b2;
(3)-x2+4xy-4y2
(4)3ax2+6axy+3ay2
(5)(2x+y)2-6(2x+y)+9 22
2_
2222
第五篇:因式分解教案
E度中考网www.xiexiebang.com
9.1因式分解
【教学目标】
知识与技能目标:
1、了解因式分解的意义及其与整式的乘法之间的关系。
2、会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数)。过程与方法目标:通过了解因式分解的意义及其与整式的乘法之间的关系,从中体事物之间可以相互转化的辩证思想。
[情感与态度目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
【重点难点】
重点:因式分解的概念与提公因式法。
难点:理解因式分解与整式乘法的相互关系及灵活运用提公因式法分解因式。关键点:对公式的结构特征应做出具体分析,掌握公式的特点,加深理解,并培养学生在多变的情况运用公式。
【教法建议】
1.因式分解与整式运算是不同的整式变形,概念的引人应着重引导学生观察变形的特点,理解变形的意义,还应随时回忆这一概念、运用这一概念、巩固这个概念,而不要希望一蹴而就。
2.在运用各种方法因式分解时应重视培养学生的观察能力,在教学中应给学生以足够的时间观察,并充分交流观察的结果,汇报观察结果后而采取对策,而不应让学车模仿例题,只有在这种观察的实践活动中,才能培养学生的观察能力,才能训练学生选择正确的解题策略。
3.在因式分解中换元思想起着重要的作用,公因式m既可以是单项式,又可以是多项式,公式法中的a,b„„也可以表示任何一个代数式。本章运用换元法这一重要的数学思想方法也是为今后的代数学习打下良好的基础。
4.提取公因式法是因式分解的最基本的方法,也是最常用的方法,它的理论依据是乘法分配律。在讲解时可以先讲单项式乘以多项式,再把它逆过来运算就是提取公因式,用这个方法,首先对要分解的多项式认真观察,确定公因式是至关重要的。
【教学过程】
一、回顾:
1、整式乘法有几种形式?
中国最大的教育门户网站
E度中考网www.xiexiebang.com
E度中考网www.xiexiebang.com
(1)单项式乘以单项式
(2)单项式乘以多项式:a(m+n)=am+an(3)多项式乘以多项式:(a+b)(m+n)=am+an+bm+bn
2、乘法公式有哪些?
(1)两数和乘以它们的差公式:ababab2(2)两数和的平方公式:aba22abb2
23、试计算
(1)3a(a-2b+c)(2)(a+3)(a-3)(3)a2b(4)a3b 2
2二、探索新知,找出规律
1、根据上面得到的结果,你会做下面的填空吗?
(1)3a-6ab+3ac=()()(2)a-9=()()
(3)a+4ab+4b=()()(4)a-6ab+9b=()()
2、观察复习与回顾的练习,你能发现它们之间的联系与区别吗? 学生反复仔细观察、对比,找出其中的联系与区别。
议一议:由a(a+1)(a-1)得到a-a变是什么运算?由a-a得到
a(a+1)(a-1)的变形与它有什么不同?
3、比小学学过的因数分解与乘法之间的联系,概括,归纳得出什么是因式分解? 把一个多项式化为几个整式的乘积形式,这就是因式分解。想一想:因式分解与整式乘法有什么关系? 因式分解与整式乘法的关系:
因式分解结合:a-b=(a+b)(a-b)
说明:从左到右都是因式分解其特点是:由和差形(多项式)转化成整式的积的形式;从右到左是整式乘法特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法正好相反。
问题:你能利用因式分解与整式乘法正好相反这一关系。举出几个因式分解的例子吗? 由学生举例说明,也可以让学生更好地理解因式分解与整式乘法之间有的关系。中国最大的教育门户网站
E度中考网www.xiexiebang.com
223322222E度中考网www.xiexiebang.com
三、巩固练习
1、判断下列各式哪些是整式乘法,哪些是因式分解?
(1)x24y2x2yx2y(2)2xx3y2x26xy(3)5a125a210a1(4)x24x4x2 22(5)(a+3)(a-3)=a-9(6)m24m2m2
22、想一想:多项式ma+mb+mc中的每一项都含有一个相同的因式 ?你知道这个相同的因式怎样称呼吗?
由学生回答,教师点评。
我们称之为公因式,介绍“提公因式法”:
把公因式提出来,多项式ma+mb+mc就可以分解成两个因式m和(a+b+c)的乘积了,像这种因式分解的方法,叫做提公因式法。
利用a2b2abab和a22abb2ab乘法公式对多项式进行因式
2分解,这种因式分解的方法就称为公式法。其中,a、b可以表示单项式,也可以表示多项式。
四、例题精讲
例1对下列多项式进行因式分解:(1)-5a+25a;
(3)25x-16y; 22
2(2)3a-9ab;(4)x+4xy+4y.22
思路点拨:先由老师板书示范,然后再由学生独立完成,教师随时点评。把一个多项式因式分解,首先要考虑有没有公因式,若有公因式应提公因式,而且要提彻底,用乘法公式应正确选择,上例都只用一种因式分解的方法。
例2 对下列多项式进行因式分解:(1)4xy+4xy+xy;(2)3x-12xy
思路点拨:本题的因式分解,应先考虑提公因式法,而后考虑应用乘法公式进行分解。中国最大的教育门户网站
E度中考网www.xiexiebang.com
32322E度中考网www.xiexiebang.com
例3 议一议:9999能被100整除吗?你是怎样想的,与同伴交流。小明
是
这
样
想的:399399=9999299199992199991991=100×98 所以:9999能被100整除。
你知道每一步的根据吗?想一想9999还能被哪些整数整除?
五、随堂练习课本练习1、2、3 点评:练习第1(1)题要让学生理解怎样分解,分解的最后结果是几个整式的积的形式。这是初学因式分解时应反复强调的问题,(2)题要让学生明白如何正确地使用乘法公式进行因式分解。对于第3题,教师还可以提出更有意义的探索问题。如你还有别的办法知道哪一个体积更大?
六、布置作业:课本习题第1、2、3题
七、本课小结
1、在这节课中你学到了什么?
2、因式分解和整式乘法有何区别?
3、分解因式要注意几个问题?
4、常用的因式分解有几种方法?
33中国最大的教育门户网站
E度中考网www.xiexiebang.com