第一篇:数列极限存在的条件(经典课件)
§3 数列极限存在的条件
教学内容:单调有界定理,柯西收敛准则。
教学目的:使学生掌握判断数列极限存在的常用工具。掌握并会证明单调有界定理,并会运用它求某些收敛
数列的极限;初步理解Cauchy准则在极限理论中的主要意义,并逐步会应用Cauchy准则判断某些数列的敛散性。
教学重点:单调有界定理、Cauchy收敛准则及其应用。
教学难点:相关定理的应用。
教学方法:讲练结合。
教学学时:2学时。
引言
在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。
本节将重点讨论极限的存在性问题。为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。本节就来介绍两个判断数列收敛的方法。
一、单调数列:
定义 若数列an的各项满足不等式anan1(aan1),则称an为递增(递减)数列。递增和递减数列统称为单调数列. (1)n12例如:为递减数列;n为递增数列;不是单调数列。nn
二、单调有界定理:
考虑:单调数列一定收敛吗?有界数列一定收敛吗?以上两个问题答案都是否定的,如果数列对以上两个条件都满足呢?答案就成为肯定的了,即有如下定理:
定理2.9(单调有界定理)在实数系中,有界且单调数列必有极限。
证明:不妨设an单调递增有上界,由确界原理an有上确界asupan,下面证明limana.0,n
一方面,由上确界定义aNan,使得aaN,又由an的递增性得,当nN时aaNan; 另一方面,由于a是an的一个上界,故对一切an,都有anaa;
所以当nN时有aana,即ana,这就证得limana。n
同理可证单调递减有下界的数列必有极限,且为它的下确界。
例1 设an1111,n1,2,其中2,证明数列an收敛。23n
证明:显然数列an是单调递增的,以下证明它有上界.事实上,an1111 22223n
11111111111 1223(n1)n223n1n
212,n1,2, n
于是由单调有界定理便知数列an收敛。
例2 证明下列数列收敛,并求其极限:
n个根号
解:记an
显然a1222,易见数列an是单调递增的,现用数学归纳法证明an有上界2.22,假设an2,则有an12an222,从而数列an有上界2.n2于是由单调有界定理便知数列an收敛。以下再求其极限,设limana,对等式an12an两边
2同时取极限得a2a,解之得a2或a1(舍去,由数列极限保不等式性知此数列极限非负),从而 lim2222.n
例3证明lim(1)存在。n1nn
分析:此数列各项变化趋势如下
我们有理由猜测这个数列单调递增且有上界,下面证明这个猜测是正确的。
证明:先建立一个不等式,设ba0,nN,则由
bn1an1(ba)(bnbn1abn2a2ban1an)(n1)bn(ba)得到不等式 an1bn(n1)anb(*)
以b111111a代入(*)式,由于(n1)anb(n1)(1)n(1)1 nn1n1n
n1nn111由此可知数列1为递增数列; nn1于是1n1
再以b11111a代入(*)式,同样由于(n1)anb(n1)n(1),2n2n
2n2nn14由此可知数列1为有界数列; n111于是1112n22n
n综上由单调有界定理便知lim(1)存在。nn
n1注:数列1是收敛的,但它的极限目前没有办法求出,实际上它的极限是e(无理数),即有n
1lim(1)n=e,这是非常有用的结论,我们必须熟记,以后可以直接应用。nn
例4 求以下数列极限:
(1)lim(1);(2)lim(1nn1nn1n1);(3)lim(1)2n.n2nn
n1n1 解:(1)lim(1)lim1nnnn11; e
(2)lim(1n1n1)lim1n2n2n2ne 12
(3)lim(1n12n)n1nlim1e2.nn2
三、柯西收敛准则:
1.引言:
单调有界定理只是数列收敛的充分条件,下面给出在实数集中数列收敛的充分必要条件——柯西收敛准则。
2.Cauchy收敛准则:
定理2.10(Cauchy收敛准则)数列an收敛的充分必要条件是:对任给的0,存在正整数N,使得当n,mN时有|anam|;或对任给的0,存在正整数N,使得当nN,及任一pN,有anpan。
3.说明:
(1)Cauchy收敛准则从理论上完全解决了数列极限的存在性问题。
(2)Cauchy收敛准则的条件称为Cauchy条件,它反映这样的事实:收敛数列各项的值愈到后面,彼此愈接近,以至于充分后面的任何两项之差的绝对值可以小于预先给定的任意小正数。或者,形象地说,收敛数列的各项越到后面越是“挤”在一起。
(3)Cauchy准则把N定义中an与a的之差换成an与am之差。其好处在于无需借助数列以外的数a,只要根据数列本身的特征就可以鉴别其(收)敛(发)散性。
(4)数列an发散的充分必要条件是:存在00,对任意的NN,都可以找到n,mN,使得anam0;存在00,对任意的NN,都可以找到nN,及pN,使得anpan0.例5设an1112n,证明数列an收敛。101010
证明:不妨设nm,则
anam111m1m2n101010
1110m11nm11011111 mnm19101010mm110对任给的0,存在N
例6设an1
证明:0,对一切nmN有|anam|,由柯西收敛准则知数列an收敛。11,证明数列an发散。2n
anp1,对任意的NN,任取nN,及pn,则有 211111111an(共n项)n0 n1n22n2n2n2n2n2由柯西收敛准则知数列an发散。
第二篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.
第三篇:数列极限教案
数列的极限教案
授课人:###
一、教材分析
极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。
二、教学重点和难点
教学重点:数列极限概念的理解及数列极限N语言的刻画。
教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。
三、教学目标
1、通过学习数列以及数列极限的概念,明白极限的思想。
2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。
四、授课过程
1、概念引入
例子一:(割圆术)刘徽的割圆术来计算圆的面积。
.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断
1接近圆的面积。
例子二:庄子曰“一尺之锤,日取其半,万世不竭”。
第一天的长度1第二天的剩余长度 第二天的剩余长度
第四天的剩余长度 8
.....第n天的剩余长度n1.......2
随着天数的增加,木杆剩余的长度越来越短,越来越接近0。
这里蕴含的就是极限的概念。
总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:
1111(1): 1,,......; 23nn
1n1111:1,,,......;(2)n2345
(3)n2:1,4,9,16,......;
(4)1:1,1,1,1,......,1,......; nn
我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)
(4)中的数列却没有这样的特征。
此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。
可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。
2、内容讲授
(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x
n的极限,或者说数列xn收敛且收敛于数a。
写作:limxna或xnan。
n
如果数列没有极限,就说数列是发散的。
注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。
(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n
若取1,则存在N1000,当nN时,xna。1000
数列极限的N语言:
limx
nna0,N,nNxna.数列极限的几何解释:
3、例题讲解
n211。例题1用数列极限的定义证明limnnn
n21证明:设xn,因为 nn
n21212xn1nnnnn
0,欲使xn,只要22即n,n
2我们取N1,当nN时,
n2122.nnNn
n21所以lim1.nnn
2注:N的取法不是唯一的,在此题中,也可取N10等。
例题2 设xnC(C为常数),证明limxnC。n
证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n
小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业
第四篇:数列极限复习
数列极限复习题
姓名
242n1、lim=; n139(3)n
an22n1a2、若lim(2n)1,则=; nbn2b
1an3、如果lim()0,则实数a的取值范围是;n2a
n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n
___;
a5.已知无穷等比数列n的前n项和
穷等比数列各项的和是;
6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;
7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;
8、无穷等比数列an的各项和为2,则a1的取值范围是
1的分m
9、无穷等比数列an中,为;
lim(a2a3...an)
n
=1,则a1的取值范围
cosnsinn
10、计算: lim,[0,]
ncosnsinn
222na2n111、若lim2n1,则实数a的取值范围是; 2n
12a
23n2n(1)n(3n2n)
12、若数列{an}的通项公式是an=,n=1,2,„,则
lim(a1a2an)__________;
n
1
1n2012n(n1)
13、若an,Sn为数列an的前n项和,求limSn____;
n
31n2013n1
214、等差数列an,bn的前n项和分别为Sn,Tn且
an
nbn
Sn2n
,则Tn3n
1lim15、设数列an、bn都是公差不为0的等差数列,且lim
lim
b1b2b3n
na4n
an
3,则bn16、已知数
列为等差数列,且,则
a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是
n1q
2__________;
18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若
lim
Sn
11,则公比q的取值范围是.;
nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n
()其中Sn表示数列{an}的前n项和.则limnan
A.0B.1C.D.
220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()
(A)limanA, limbnB则lim
n
n
anA
(bn0,nN)
nbBn
(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()
n
ab
.2A.2
3B.12
C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知
A0,0,B3,0,C2,2,则点M的坐标是()
52522A、(,)B、(,1)C、(,1)D、(1,)
3333323、已知数列
lim
{an},{bn}
都是无穷等差数列,其中
a13,b12,b2是a2和a
3的等差中
an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且
24、设正数数列
lga
lin
1n
an
为一等比数列,且a24,a416,求
lagn2n
2al2ng;
bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an
nSn
且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;
(2)若数列an的前n项和为Sn,当a1时,求lim
Sn
nan
第五篇:数列极限的证明
例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;
n
xn1xn(Ⅱ)计算lim。n
xn
解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得
0x2sinx1x1,设0xn,则
0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。
n
记alimxn,由xn1sinxn得
x
asina,所以a0,即limxn0。
n
(Ⅱ)解法1 因为
sinxlimx0
x
1xlime
x0
1sinxlnx2x
lime
x0
1cosx1
2xsinxx
xsinx6x2
xcosxsinx
lime
x0
2x3
lime
x0
e
又由(Ⅰ)limxn0,所以
n
1xn
xn1sinxnxn2
limlimnnxxnn
sinx
limx0x
解法2 因为
1xxe
sinxx
sinxx
sinxx1x
xsinxx
x3,又因为
limsinxx1sinxx,lim1x0x36x0x
xnxsinxxe,sinx6所以lim,ex0x1
故
11xlimn1nxnxnsinxnlimnxn
sinxlimx0xxn1x e1
6.