第一篇:七年级数学下相交线课件
一、教学目标
1、经历观察、推理、交流等过程,进一步发展空间观念和推理能力;
2、了解邻补角和对顶角的概念,掌握邻补角、对顶角的性质;
3、培养学生解决实际问题的能力。
二、教学重点与难点
重点:对顶角相等的探索过程。
难点:学生推理能力和表达能力的培养。
三、教学准备
学生:三角尺、量角器。
教师:多媒体课件、剪刀。
四、教学设计(教学过程)
1、情景引入(多媒体投影汕头大桥的图片)
同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案,这些都给我们以相交线、平行线的形象。两条直线相交能形成哪些角?这些角又有什么特征?
设计意图说明:通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。
2、探究新知
(1)教师动手操作:用剪刀剪开布片。在这个过程中握紧把手时,随着把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。如果把剪刀的构造看成两条相交的直线,这就关系到两条相交直线所成的角的问题。
(2)取两根木条a、b,将它们钉在一起,并把它们想像成两条直线,就得到一个相交线模型。如图1所示。在七年级上册中我们已经知道∠1与∠2的和等于180°,所以∠1与∠2互补,再仔细观察,这时的∠1与∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角不仅互补,而且互为邻补角。
设计意图说明:用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。
这样安排既可以复习七年级上册中互补的知识,又为学习本堂课的新知识做了铺垫。
3、谈论交流
(1)让学生讨论教科书中第4页的“讨论”。讨论时所给的表格可以逐步呈现,先结合两条直线相交的图形,找出其中所成的角,寻找各对角的位置关系。
(2)讨论不同的角的位置关系,得出对顶角的定义,并提醒学生注意:①是两条直线相交而得;②有一个公共顶点;③没有公共边,三个条件缺一不可。
(3)对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。
设计意图说明:
教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。
教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。
“对顶角相等”这句话,学生很好理解,只是不知怎么阐述理由,教师可引导学生用“同角的补角相等”得出对顶角的性质。
4、初步应用
(1)教科书第5页的例题。
(2)练习(补充)
①下列说法正确的是()
A、有公共顶点的两个角是对顶角
B、相等的两角是对顶角
C、有公共顶点并且相等的角是对顶角
D、两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角
②已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3=
③如图2:直线a、b、c两两相交,∠1=60°,∠2=∠4,∠3=,∠5=
设计意图说明:学生叙述,教师板书。补充练习的目的是为了使学生加深对知识的理解,参考答案:①D ②180° ③120°、90°
5、小结提高
可以采用师生问答的方式或先让学生归纳、补充,然后教师补充的方式进行,主要围绕下列问题:
(1)本节课我们学了什么知识?
(2)你有什么收获?
设计意图说明:发挥学生的主体意识,培养学生的归纳能力。
6、布置作业
(1)必做题:教科书第9页习题5.1第1、2、7题。
(2)选做题:
设计意图说明:学生可以根据自己的不同水平选择不同的作业。
① 如图3:直线AB与CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC=
② 已知两条直线相交而成的四个角,其中的一个角为50°,求其余三个角的度数。
③ 如图4:AB⊥CD于点O,直线EF过点O,若∠AOE=65°,求∠DOF的度数。
选做题参考答案:①135° ②130°,50°,130° ③25°
(3)备选题:
① 如图5:OA⊥OC,OB⊥OD,∠1=55°,求∠2,∠3的度数。
②两条直线交于一点,有几对对顶角?
三条直线交于一点,有几对对顶角?
四条直线交于一点,有几对对顶角?
X条直线交于一点,有几对对顶角?
备选题参考答案:①35°,35° ②2×1=2(对)3×2=6(对)
4×3=2(对)x(x-1)=(x2-x)(对)
五、设计思想
本课设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以启发探究式教学为主导,以学生熟悉的桥梁两端斜拉的平行线和侧面的相交线等实景引入课题,增加了学生的学习兴趣。
教师应发扬教学民主,成为学生数学活动的组织者、引导者和合作者。通过多媒体教学辅助手段,引导学生在活动中观察,启发学生用比较直观的语言来叙述邻补角和对顶角的概念,充分体现“数学教学主要是数学活动的教学”这一教育精神。
组织好小组合作学习,加强师生之间的互动,培养学生在独立思考问题的基础上,能够尊重与理解他人的意见,并培养与他人合作的能力。
第二篇:七年级下数学平行线相交线必背证明题
七年级下数学平行线相交线必背证明题
一、平行线之间的基本图
1、如图已知,AB∥CD.AF,CF分别是EAB、ECD的角平分线,F是两条角平分线的交点; E F B1求证:FAEC.2D2、已知AB//CD,此时A、AEF、EFC和C的关系又如何?你能找出其中的规律吗?
E
D3、将题变为如下图:AB//CD
C
此时A、AEF、EFD和D的关系又如何?你能找出其中的规律吗?
4、如图,AB//CD,那么A、C与AEC有什么关系?
ED
ED
C
这一部分习题会了,就可以有很大提高了!-------董老师
二、两组平行线的证明题【找出连接两组平行线的角】
1.已知:如图,CD平分∠ACB,AC∥DE,∠DCE=∠FEB,求证:EF平分∠DEB.
C
E
B3、已知:如图2-96,DE⊥AO于E,BO⊥AO,FC⊥AB于C,∠1=∠2,求证:DO⊥
AB.3、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
4、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由.三、两组平行线构造平行四边形
1.已知:如图,AB是一条直线,∠C = ∠1,∠2和∠D互余,BE⊥FD于G. 求证:AB∥CD .
这一部分习题会了,就可以有很大提高了!-------董老师
2、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.
3、如图,M、N、T和A、B、C分别在同一直线上,且∠1=∠3,∠P=∠T,求证:∠M=∠R。
四、证特殊角
D
F
A
(第22题)
B C1、AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则∠AEC的度数是.
2、AB∥CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作PFEP垂足为P,若∠PEF=300,则∠PFC=_____.
这一部分习题会了,就可以有很大提高了!-------董老师
图图8
3.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
4.如图已知直线a∥b,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=
∠2.
五、寻找角之间的关系
1、如图2-97,已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥BC.2、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。
D C
E
这一部分习题会了,就可以有很大提高了!-------董老师
第三篇:七年级数学《相交线与平行线》练习题
过去属于死神,未来属于你自己。彭宏威
七年级数学《相交线与平行线》练习题
一、选择题(每小题4分,共24分)
1.下面四个图形中,∠1与∠2是对顶角的图形的点A到直线c的距离是3cm。
二、填空题(每小题4分,共20分)个数是()
A.0B.1C.2D.
22.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()
A.第一次右拐50°,第二次左拐130°。
B.第一次左拐50°,第二次右拐50°。C.第一次左拐50°,第二次左拐130°。D.第一次右拐50°,第二次右拐50°。
3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥bB.b⊥d
C.a⊥dD.b∥c
4.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m与n的关系是()
A.m = nB.m>n
C.m<nD.m + n = 10
5.如图,若m∥n,∠1 = 105°,则∠2 =()A.55°B.60°C.65°D.75°
1m2
n
6.下列说法中正确的是()
A.有且只有一条直线垂直于已知直线。
B.从直线外一点到这条直线的垂线段,叫做
这点到这条直线的距离。
C.互相垂直的两条直线一定相交。
D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则
7.两个角的两边两两互相平行,且一个角的12
等
于另一个角的13,则这两个角的度数分别
为。
8.猜谜语(打本章两个几何名称)。
剩下十分钱;两牛相斗。9.下面生活中的物体的运动情况可以看成平移的是。
(1)摆动的钟摆。(2)在笔直的公路上行驶的汽车。(3)随风摆动的旗帜。(4)摇动的大绳。(5)汽车玻璃上雨刷的运动。(6)从楼顶自由落下的球(球不旋转)。
10.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC =,∠COB =。
A
E
D
D
O
C
B
AB
(第10题图)(第11题图)11.如图,AC平分∠DAB,∠1 =∠2。填空:因
为AC平分∠DAB,所以∠1 =。所
以∠2 =。所以AB∥。
三、做一做(本题10分)12.已知三角形ABC、点D,过点D作三角形ABC
平移后的图形。
A
D
BC
第四篇:七年级数学相交线与平行线练习题
相交线与平等线练习题2012-2-251、如图,直线a,b相交于点O,若∠1等于40°,则∠2等于()
A.50°B.60°C.140°D.160°
2、如图,已知AB∥CD,∠A=70°,则∠1的度数是()
A.70°B.100°C.110°D.130°
3、已知:如图,ABCD,垂足为O,EF为过点O的一条直线,则1 与2的关系一定成立的是()
A.相等
B
F
D
AO
B
B.互余
C.互补
D.互为对顶角
C
E
D
第3题第1题第2题
4、如图,AB∥DE,E65,则BC()
A.13
5
B.115
C.36D.65
5、如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20方向行走至C处,此时需把方向调整到与出
发时一致,则方向的调整应是()
A.右转80°B.左转80°C.右转100°D.左转100°
6、如图,如果AB∥CD,那么下面说法错误的是()
A.∠3=∠7;B.∠2=∠6C、∠3+∠4+∠5+∠6=180D、∠4=∠8
A B E
A
B
第6题第4题第5题
7、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么123()A.180
M
1P
23N
a
B.270
C.360
D.540
b8、如图,已知∠3=∠4,若要使∠1=∠2,则还需()
A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD9、如图4,AB∥DE,∠1=∠2,则AE与DC的位置关系是()。A、相交B、平行C、垂直D、不能确定
10、如图5,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角有()。
A、2个B、4个C、5个D、6个
11、如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。
A、30B、36C、42D、1812、如图7,如图,AB∥DE,∠E=65 º,则∠B+∠C=()
A.135ºB.115ºC.36ºD.65º
13、如图8,当剪刀口∠AOB增大21°时,∠COD增大。
14、如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁
内角等于______.
15.如图10,一个宽度相等的纸条按如图所示方法折叠一下,则∠1______________.
16.吸管吸易拉罐的饮料时,如图11,1110,则2(易拉罐的上下底面互相平行)
图8图9图10图1
117.如图12,CD⊥AB于D,DE∥BC,∠1=∠2,则FG与AB的位置关系是_____。
18、如图13,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC为().A.30°B.60°C.90°D.120°
19、如图14,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;
④∠5+∠8=180°.其中能判断a∥b的条件是().A.①③B.②④C.①③④D.①②③④
图
2A
c
a
b 图1
4E C
图1320、如图15,直线a∥b,直线c与a,b 相交.若170,则2_____.
21、如图16,已知170,270,360,则4______.
22、如图17,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______
c a b
a
D
C
b
A
B
图15图16图17
23、如图18,请写出能判定CE∥AB的一个条件.
24、如图19,已知AB//CD,=____________
25、如图20,若如果∠1=那么AB∥EF,若如果∠1=___那么DF∥AC,若∠DEC+___=180°,那么DE∥BC.A
3B
C
a b
A图20
E B
图18图1926、如图21,l1∥l2,∠1=105°,∠2=40°,则∠3=.27、如图22,AB∥CD,BC∥DE,则∠B+∠D=.28、如图23,AD∥BC,AB∥CD,E在CB的延长线上,EF经过点A,∠C=50°,∠FAD=60°,则∠EAB=.图21 图2
2图2329、如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动
刀片时会形成∠
1、∠2,则∠1+∠2=___。
30、推理填空:
如图: ① 若∠1=∠2,则∥()若∠DAB+∠ABC=180,则∥()
C
②当∥时,∠ C+∠ABC=180()当∥时,∠3=∠C()
A
B31、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50,求:∠BHF的度数. 解:
32、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2. 解:
D
A
EH
B
CFD
B
E
F
G
C33、如图13,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断EF∥BD吗?为什么? 解:
34、如图,已知,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40,求∠2的度数。解:
35、如图25,已知:AB∥CD,AE平分∠BAC,CE平分∠ACD,请说明:AE⊥CF.解:
E
图
5B D36、如图,AB∥CD,需增加什么条件才能使∠1=∠2成立?(至少举出两种)解:
37、在如图,已知直线AB和直线CD被直线EF所截,交点分别为E、F,∠AEF=∠EFD.(1)直线AB和直线CD平行吗?为什么?
(2)若EM是∠AEF的平分线,FN是∠EFD的平分线,则EM与FN
平行吗?为什么? 解:
38、如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性。
A
B
D
(1)(2)(3)(4)
解:结论:(1)(2)
(3)(4)
选择结论:,说明理由。
第五篇:七年级相交线复习教案
第五章 小结
教学目标
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.重点、难点
重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:垂直、平行的性质和判定的综合应用.教学过程
一、复习提问
本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.二、回顾与思考 按知识网展开复习.两线条相直交平线 面的 内位两置条关直系相交两三条条 直直线线被所第截平行公理邻补角,对顶角垂线及其性质对顶角相等点到直线的距离同位角,内错角,同旁内角性质判定平行平移1.对顶角、邻补角。
(1)教师提出问题,由幻灯片出示.①两条直线相交、构成哪两种特殊位置关系的角?指出图(1)中具有这两种位置的角.cACBOAD2413aCOBD
(1)(2)(3)②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何? ③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?(2)学生回答.(3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。
(4)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等, 你得到什么结论? 让学生明确,对顶角总是相等,邻补角一定互补, 但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为90°角, 这时两条直线互相垂直.2.垂线及其性质.(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用.作判定用时写成:如图(2),因为∠AOD=90°,所以AB⊥CD, 这是一个角的“数”到两直线垂直的“形”的判断。
作为性质用时写成:如图(2),因为AB⊥CD,所以∠AOD=90°。这是由“形”到“数”的说理。
(2)如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.CF12bAABAClD
(4)(5)(6)鼓励学生用不同方法求解.(3)垂线性质1和性质2.让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已知直线的垂线存在并且唯一的.学生思考: EDBBC
①请回忆一下后体育课测跳远成绩时,教师是怎样测量的? 如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一②条直线上吗?为什么? ③点到直线的距离、两条平行线的距离.初中阶级学习了三种距离,即是距离,就要懂得的共同点:距离都是线段的长度,又要懂得区别:两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是某条直线上的一点到另一点平行线的距离.学生练习:①如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.②请归纳一下与垂直有关的知识中,有哪些重要结论? 如垂线的性质1、2,又如两种直线都垂直于第三条直线,这两条直线平行, 一条直线与平行线中一条垂直,也与另一条垂直„„ 3.同位角、内错角、同旁内角.只要求学生从图形中找出同位角,内错角,同旁内角.练习:如图(7),找出∠
1、∠
2、∠3中哪两个是同位角、内错角、同旁内角.12c3ba(7)
4.平行线判定与性质
(1)怎样判别两条直线是否平行.(2)平行线有什么特征?(3)对比平行线的性质和直线平行的条件,它们有什么异同?(4)为什么研究平面内两直线的位置关系总是与角联系起来?围绕这些问题展开讨论,交流.教师使学生进一步明确:平行线的判定也是由“数”即角与角的关系到“形”的判断,而性质则是“形”到“数”的说理,在研究两条直线的垂直或平行时共同点是把研究它们的位置关系转化为研究角或角之间的关系。
学生练习:①填空:如图(8),当_______时,a∥c,理由是________;当______时, b∥c,理由是_________;当a∥b,b∥c时,______∥______,理由是_________.d12aAADDbcBB'C34
(8)(9)(10)②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系?为什么? 教师根据学生情况酌情给予引导.5.关于平移,让学生思考:(1)图形平移时,连接对应点有什么关系?(2)如何确定图形平移的方向和平移的距离?(3)你能用平移设计一些图案吗? 练习:如图(10),平移四边形ABCD,使点B移动到点B′,画出平移后的四边形A′B′C′D′.三、作业
课本P39.1~8.BC