专题:等差等比数列作业

  • 等差、等比数列问题

    时间:2019-05-13 09:02:20 作者:会员上传

    等差等比数列问题
    一、等差数列、等比数列基本数列问题
    1.等差数列an,s636 ,sn6144,sn324,求n的值
    1)an2an11;2)an2an1n1;3)an2an1n2n1; 4)an2an12n;5)an2an13n
    1)sn2an1;2)sn22n1n1;3)sn2an1n2

  • (经典整理)等差、等比数列的性质

    时间:2019-05-14 18:37:12 作者:会员上传

    等差、等比数列的性质一:考试要求1、理解数列的概念、2、了解数列通项公式的意义3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳(一)主要

  • 等差、等比数列性质类比

    时间:2019-05-14 18:37:16 作者:会员上传

    等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列则{an}为等差数列。 2.等差数列的通项公式:an,若2an1anan2ana1(n1)d------该公式整理后是

  • 等差等比数列的证明

    时间:2019-05-13 09:02:26 作者:会员上传

    专题:等差(等比)数列的证明1.已知数列{a}中,anan15且2an12n1(n2且nN*).an1(Ⅰ)证明:数列2n为等差数列;(Ⅱ)求数列{an}的前n项和S. n2. 已知数列{a}中,an12且an1an2n30(n2且nN*).证明:数列an2

  • 等差等比数列综合练习题

    时间:2019-05-13 07:21:55 作者:会员上传

    等差数列等比数列综合练习题 一.选择题 1. 已知an1an30,则数列an是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值

  • 等差、等比数列的判断和证明

    时间:2019-05-14 18:37:15 作者:会员上传

    等差、等比数列的判断和证明一、 1、等差数列的定义:如果数列an从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。即anan

  • 等差与等比数列的应用

    时间:2019-05-14 12:01:30 作者:会员上传

    等差与等比数列的应用 广东省深圳中学 黄文辉 一、教学内容及解析 结合《考试说明》和近几年的高考数列真题,高考对数列的考查主要是从两个角度: (1)考查等差、等比数列的基本量

  • 等差与等比数列综合专题练习题

    时间:2019-05-13 09:02:22 作者:会员上传

    1.数列{an}是等差数列,若
    值时,n=A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10anB.17C.19D.21 2. 已知公差大于0的等差数列{
    求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a

  • 等差等比数列学生版(共五篇)

    时间:2019-05-14 18:37:12 作者:会员上传

    等差数列基础梳理
    1.等差数列的基本问题定义: 通项公式: 等差中项前n项和公式
    2.等差数列的性质已知数列{an}是等差数列,Sn是其前n项和.
    一、等差数

  • 一轮复习等差等比数列证明练习题

    时间:2019-05-14 13:42:14 作者:会员上传

    Fpg 1.已知数列an是首项为a1,公比q141の等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1nn2.数列满足1设cnlog5(an3). (Ⅰ)求证:cn是等比数列; *

  • 一轮复习等差等比数列证明练习题

    时间:2019-05-14 15:51:22 作者:会员上传

    本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 1.已知数列an是首项为a1,公比q141的等比数列,bn23log1an 44(nN*),数列cn满足cnanbn. (1)求证:bn是等差数列; 2ana2,aa6a6(nN), n1n

  • 等差、等比数列证明的几种情况(最终5篇)

    时间:2019-05-13 09:02:34 作者:会员上传

    等差、等比数列证明的几种情况在高中数学教材中,对等差,等比数列作了如下的定义:一个数列从第二项起,每一项与前一项的差等于一个常数d,则这个数列叫等差数列,常数d称为等差数列的

  • 二轮:等差、等比数列的计算与证明

    时间:2019-05-14 18:37:17 作者:会员上传

    第一讲 等差、等比数列的计算与证明1.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+„+a7=() A.14B.21C.28D.357a1+a7解析:由等差数列性质得a3+a4+a5=3a4,由3a4=12,得a4=4,所以a1+a2+„+a7=7a4=28.答案:C 22.(

  • 等差、等比数列子数列性质的探究

    时间:2019-05-13 09:02:33 作者:会员上传

    等差、等比数列的子数列探究【教学目标】经历等差数列与等比数列子数列的性质的研究过程,体验“归纳——猜想——论证”的数学发现的科学方法;体会从特殊到一般、类比等数学思

  • 等差等比数列下标性质及应用(五篇范例)

    时间:2019-05-15 01:21:46 作者:会员上传

    等差等比数列下标性质及应用 戎国华 一. 教学目标: (一)知识与技能:等比等差数列的下标性质; 比数列的下标性质及其推导教学目标:掌握等差等方法(二)过程能力与方法学生的猜想能力能

  • 等差、等比数列的性质及配套练习(优秀范文五篇)

    时间:2019-05-14 18:37:17 作者:会员上传

    ◇等差数列与等比数列的性质◇等定 义 式:an 等差数列的概念 an1d(d为常数,n2,nN*),或an1and(nN*). 递 推 式:an1and(nN*).ab. 2等差中项:任何两个数a,b都有且仅有一个等差中项AA

  • 等比数列求和作业5篇范文

    时间:2019-05-14 18:38:05 作者:会员上传

    2.5《等比数列前n项和》(第二课时)作业
    1、 在等比数列中,a1a2a36,a2a3a43, 则a3a4a5a6a7 A. 11
    8B.1916C.98D.34
    2、在等比数列an中,a15,S555,则公比q等于
    A.4B. 2C.2D.2或4
    3、

  • ③等比数列课后限时作业

    时间:2019-05-14 18:38:11 作者:会员上传

    课后限时作业(二十六)(60分钟,150分)(详解为教师用书独有)A组一、选择题(本大题共6小题,每小题7分,共42分)1.(2008·福建)设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为