专题:大学常用不等式
-
大学中常用的不等式
大学中常用不等式,放缩技巧 一: 一些重要恒等式 ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sina ⅳ: e=2+1/2!+1/3!+…
-
大学数学中不等式的证明方法
龙源期刊网 http://.cn
大学数学中不等式的证明方法
作者:吴莹
来源:《学园》2013年第01期
【摘 要】不等式在科学研究中的地位很重要,但对不等式的证明有些同学无从下手,用什么 -
不等式知识点整理
不等式知识点整理一、不等关系:1.实数的大小顺序与运算性质之间的关系:abab0;abab0;abab0.2.不等式的性质:(1)abba(自反性)(2)ab,bcac(传递性)(3)abacbc(可加性)(4)ab,c0acbc;ab,c0acbc(可乘性)(5)ab,c
-
不等式总结
不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a与b之间的大小关系 (1)a-b>0a>b;(2)a-b=0a=b;(3)a-b<0a<b.(4)若 a、bR,则(5)(6)a>1a>b;ba=1a=b;ba<1a<b.b2.不等式的性质(1)a>bb<a(对称性)
-
不等式基础知识汇总
不等式基础知识一、不等式的概念1.不等式的定义不等式:用不等号连接两个解析式所得的式子,叫不等式.不等式组:含有相同未知数的几个不等式组成的式子,叫不等式组.2.不等式的分类(1)按
-
不等式知识点
不等式
一.知识点:
1.不等式的性质:
2.不等式的解法:
(一) 整式不等式的解法;(二)分式不等式的解法;(三)指对不等式的解法; 重点:含参二次不等式的解法;
3.不等式的证明:(1)作差变形;(2)分析法
4.均值 -
不等式证明
不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变
-
不等式证明
不等式的证明比较法证明不等式a2b2ab1.设ab0,求证:2. ab2ab2.(本小题满分10分)选修4—5:不等式选讲(1)已知x、y都是正实数,求证:x3y3x2yxy2;(2对满足xyz1的一切正实数 x,y,z恒成立,求实
-
专题六不等式
专题六不等式一.考试要求
1. 掌握不等式的性质和证明;掌握证明不等式的几种常用方法;掌握均值不等式;并能用以
上性质、定理和方法解决一些问题。 2. 熟练掌握解不等式的方法。 -
阿不等式专题
阿不等式专题2006年高中数学竞赛大纲对加试中不等式部分的要求全国高中数学联赛的加试命题的基本原则是向国际数学奥林匹克靠拢,总的精神是在知识方面略有扩展,适当增加一些课
-
高中数学不等式
数学基础知识与典型例题数学基础知识与典型例题(第六章不等式)答案例1.C例2. B例3. 675 例4. n3+1>n2+n例5.提示:把“”、“2”看成一个整体. 解:∵3=2(2)()又∵2≤2(2)≤6,
-
不等式证明经典[精选]
金牌师资,笑傲高考2013年数学VIP讲义 【例1】 设a,b∈R,求证:a2+b2≥ab+a+b-1。【例2】 已知0d,故保留a,消b,c,d中任一个均可。 由ad=bc得:dbca1abbccaabcabc≥1。 bcabcab(ab)(ac)a0
-
不等式证明[精选]
§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变
-
不等式证明
不等式证明 1. 比较法: 比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法 (1)作差比较: ①理论依据a-b>0a>b; a-b=0a=b; a-b0),只要证;要证A0),只要证②证明
-
不等式习题
1.若方程x2(m2)xm50只有正根,则m的取值范围是.
A.m4或m4B. 5m4
C.5m4D. 5m2
2.若f(x)lgx22ax1a在区间(,1]上递减,则a范围为
A.[1,2)B. [1,2]
C.1,D. [2,)
3.若0yx
2,且tanx3tany,则xy的最 -
不等式教案
第一讲 不等式和绝对值不等式 教学目标 1.掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。 2.理解并能运用基本不等式进行解题。 3.理解绝对值的几何意义及绝对
-
不等式和分式应用题
1、 某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。2、 有10名菜农,每人可种甲种蔬菜3亩或乙种
-
均值不等式及其应用
教师寄语:一切的方法都要落实到动手实践中高三一轮复习数学学案均值不等式及其应用一.考纲要求及重难点要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值