专题:高考数学竞赛平面几何
-
2011高考平面几何证明
2011高考平面几何证明试题选讲1(2011安徽)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABCD与梯形EFCD的面积比为2 (2011北京)如图,AD,AE,BC分别与圆O切
-
高中竞赛专题:平面几何证明
竞赛专题-平面几何证明[竞赛知识点拨]1. 线段或角相等的证明(1)利用全等△或相似多边形(2)利用等腰△3)利用平行四边形(4)利用等量代换(5)利用平行线的性质或利用比例关系(6)利用圆中的等
-
七年级数学平面几何练习题
亿库教育网http://www.xiexiebang.com百万教学资源免费下载平面几何练习题一. 选择题:1. 如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角A. 相等 B. 互补 C. 相
-
2012高考:平面几何证明(共5篇)
2012高考:几何证明1、(2012全国课标,22)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(I)CDBC;(II)△BCD∽△GBD;GEFB2、(2012广东,15)如图所示,圆O的半径为1,A
-
2018中考数学专题六平面几何基础专题
平面几何基础专题 一、 选择题: 1. (2018•浙江省衢州市,2,2 分)如图,直线 a,b 被直线 c 所截,那么∠1 的 同位角是( ) A.∠2 B.∠3 C.∠4 D.∠5 【分析】根据同位角就是:两个角都在截线
-
七年级下数学平面几何题
1. 如图所示,下列条件中,不能判断l1∥l2的是 ..A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°2.下列几组线段能组成三角形的是(A)3cm,5cm,8cm(B)8cm,8cm,18cm(C)0.1cm,0.1cm,0.1cm(D)3cm,4cm,8cm3.下列能
-
七年级数学平面几何练习试卷
平面几何练习题 一. 选择题: 1. 如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角 A. 相等 B. 互补 C. 相等或互补 D. 相等且互补 2. 如图,l1//l2,ABl1,ABC130,则 A. 6
-
高考二轮数学考点突破复习:平面几何选讲及数学思想方法
高考二轮数学考点突破复习:平面几何选讲及数学思想方法高考二轮数学考点突破复习:数学思想方法函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.方程思想,是从
-
高中数学竞赛中平面几何涉及的定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于
-
解析法证明平面几何题—高二中数学竞赛讲座(大全5篇)
【高中数学竞赛讲座2】解析法证明平面几何解析法,就是用解析几何的方法来解题,将几何问题代数化后求解,但代数问题未必容易,采用解析法就必须有面对代数困难的准备,书写必须非常
-
14-15届 中考数学平面几何经典题
1.(2014江苏南京)如图,在△ABC中,D,E分别是AB,AC的中点,过点E做EF∥AB,交BC于点F.求证:四边形DBFE是平行四边形;当△ABC满足什么条件时,四边形DBFE是菱形,为什么?2.(2014江苏南京)
-
七年级数学平面几何练习题及答案5篇
平面几何练习题 一. 选择题: 1. 如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角 A. 相等 B. 互补 C. 相等或互补 D. 相等且互补 2. 如图,l1//l2,ABl1,ABC130,则 A. 6
-
数学竞赛
Ⅰ.基本不等式
若a,b∈R,那么:a²+b²≥2ab其中等号当且仅当a=b时成立
推理:算算数平均数不小于几何平均数
a,b∈R+(a+b)/2≥(ab)½其中等号当且仅当a=b时成立
a,b,c∈R+(a+b+c)/3≥(abc)1/3 -
数学竞赛
合类学科竞赛:全国大学生数学竞赛"挑战杯"大学生课外学术科技作品竞赛全国大学生英语竞赛全国大学校院学生创意实作竞赛 “CCTV杯”全国英语演讲大赛 课余生活竞赛:全大学生DV
-
数学竞赛
竞赛数学学科感言
数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了"数学奥林匹克"这个名词。在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史最 -
高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两
-
平面几何练习题 初一
1.在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数。
2.试说明:∠A+∠B+∠C+∠D+∠E+∠F=360°
问题补充:3.已知:三角形ABC中,BC=2AB,角B=2角C,AD是BC边上的中线。求证三角形ABD -
平面几何证明习题专题
平面几何证明习题1. 如图5所示,圆O的直径AB6,C为圆周上一点,BC3, 过C作圆的切线l,过A作l的垂线AD,垂足为D, 则DAC,线段AE的长为l线段CD的长为,线段AD的长为图5PA2.PB1,AC是圆O的直径,PC