专题:高考导数基础专题
-
2014高考导数
2014高考导数汇编
bex1
(全国新课标I卷,21)设函数f(x)aelnx,曲线yf(x)在点(1,f)处的xx
切线方程为ye(x1)2
(I)求a,b;
(II)证明:f(x)1
(全国新课标II卷,21)已知函数f(x)exex2x
(I)讨论f(x -
高考导数练习三
bex1
1.(2014年北京理科)设函数f(x0aelnx,曲线yf(x)在点(1,f处的xx
切线为ye(x1)2. (Ⅰ)求a,b; (Ⅱ)证明:f(x)1.2.(2010全国文)(本小题满分12分)
已知函数f(x)=3ax4-2(3a+2)x2+4x.
(Ⅰ -
高考数学导数题
已知函数f(x)=x^2+2x+alnx
(1)若函数f(x)在区间【0,1】上恒为单调函数,求a范围
(2)当t≥1时不等式f(2t-1)≥2f(t)-3恒成立,求a的范围(1) f'(x)=2x+2+a/x=(2x^2+2x+a)/x
因为x>0,所以f'(x)的 -
2014高考数学考前20天冲刺 导数及应用
2014高考数学考前20天冲刺
导数及应用
1.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是
A.(0,1)B.(-∞,1)
C.(0,+∞)1D.0, 2
解析:选D.∵f(x)=x3-6bx+3b,
∴f′(x)=3x2-6b,
令f′(x -
高考数学专题-导数压轴题特辑1
导数压轴题特辑1一.选择题(共3小题)1.设f'(x)是函数f(x)的导函数,若f'(x)>0,且∀x1,x2∈R(x1≠x2),f(x1)+f(x2)<2f,则下列各项中不一定正确的是( )A.f(2)<f(e)<f(π)B.f′(π)<f′(e)<f′(2)C.f(2)<f′(2)﹣f′(3)<f(3)D.f′(3)<f(3)﹣f(2)<f′(2
-
高考数学导数专题讲义二:恒成立
导数中恒成立存在问题+零点问题探究1已知函数,其中ÎR.若对任意的x1,x2Î[-1,1],都有,求实数的取值范围;探究2已知函数的图象在点A(1,f(1))处的切线与直线平行。记函数恒成立,求c的取值范
-
导数证明题
题目:已知x>1,证明x>ln(1+x)。
题型:
分值:
难度:
考点:
解题思路:令f(x)=x-ln(1+x)(x>1),根据它的导数的符号可得函数f(x)在
1)=1-ln2>0,从(1,+ )上的单调性,再根据函数的单调性得到函数f -
导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例三、设x3是函数f(x)(xaxb)e
(1) 求a与b的关系式(用a表示b)
(2) 求f(x)的单调区间
(3) 设a0,求f(x)在区间0,4上的值域23x的一个 -
高考数学专题:导数的综合运用高考题答案
导数的综合运用高考题26.【解析】(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在,单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值
-
高考数学导数压轴题7大题型总结
高考数学导数压轴题7大题型总结 目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一
-
成人高考—导数习题
2003年 (10)函数y2x3x21在x1处的导数为 (A)5 (B)2 (C)3 (D)4 2004年 (15)f(x)x33,则f= (A)27 (B)18 (C)16 2005年 (17)函数yx(x1)在x2处的导数值为(25)已知函数(fx)x4mx25,且f(2)24 (Ⅰ)求m的值
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导
-
导数教学经验交流(推荐)
“整体建构”下导数教学 如果说高中数学是一座山峰,需要每个学子去攀登,那么导数无疑是阻碍在前方的悬崖峭壁之一,既充满挑战,又让许多同学望而却步。退却等于失败,而攀上峭壁更
-
导数典型题(本站推荐)
1. 已知函数f(x)alnx1(a0)
(I)若a=2,求函数f(x)在(e,f(e))处的切线方程;
1(Ⅱ)当x>0时,求证:f(x)1a(1) x2.设函数f(x)lnxx2ax(aR).(I)当a=3时,求函数f(x)的单调区间;
3(Ⅱ)若函数f(x -
导数应用一例
导数应用一例
石志群
13题:求一个正常数a,使得对于|x|≤1的所有x,都有x恒成立。 3
1333分析:x≤ +ax等价于3ax-3x+1≥0.令f(x)= 3ax-3x+1,则由对于|x|≤1的所有x,3
13都有x恒成立 -
导数应用复习
班级第小组,姓名学号高二数学导数复习题8、偶函数f(x)ax4bx3cx2dxe的图像过点P(0,1),且在x1处的切线方程为yx2,求1.求下列函数的导数:
(1)y(2x23)(x24)(2)yexxlnx
(3)y1x2
sinx
(4)y1234x -
导数的练习题
1、1) f(x)=x
xx32,则f(x)2)已知f(x)=ln2x,则f’=,[f]’=
2'(2x3)';[sin(x2x)]'25[ln(2x1)]';[(2x1)]'
2. 曲线yx
x2在点(-1,-1)处的切线方程为
3.若曲线yx2axb在点(0,b)处的 -
导数学生(最终版)
导数定义
x2
例1.yf(x)axbx1在x1处可导,则abx1
例2.已知f(x)在x=a处可导,且f′(a)=b,求下列极限:
f(ah2)f(a)f(a3h)f(ah)(1)lim;(2)lim h0h02hh
利用导数证明不等式
例6.求证下列不等式