专题:高考数学等比数列
-
2011高考数学单元复习训练18:等比数列
豆丁资源:http:///yujunqiang6639课时训练18等比数列【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.b2=ac,是a,b,c成等比数列的A.充分不必要条件B.必
-
高一数学等比数列教案
高一数学等比数列教案 高一数学等比数列教案1 教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题
-
2018年高考数学一轮复习小题精练系列专题08等比数列理!
专题08 等比数列 1.各项为正的等比数列中,与的等比中项为,则A. 1 B. 2 C. 3 D. 4 【答案】C 2.若记等比数列{an}的前n项和为Sn,若a12,S36,则S4( ) A. 10或8 B. 10 C. 10或8 D. 10或8 【答案】
-
高三数学《等比数列》教学设计[推荐五篇]
作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等
-
高三数学单元练习题:等比数列(Ⅲ)(推荐五篇)
高三数学单元练习题:等比数列(Ⅲ) 【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.不等式ax2+5x+c>0的解集为(,1132),那么a,c为( ) A.a=6,c=1 B.a=-6,c=-1 C
-
高三数学单元练习题:等比数列(Ⅱ)(精选5篇)
高三数学单元练习题:等比数列(Ⅱ) 【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有( )
-
等比数列题
等比数列
【做一做1】 等比数列3,6,12,24的公比q=__________.
2.通项公式
等比数列{an}的首项为a1,公比为q,则通项公式为an=______(a1≠0,q≠0).
【做一做2】 等比数列{an}中,a1=2,q=3, -
等比数列第一节
课题:等比数列及其前N项和
学习目标:掌握等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关
问题,培养学生的化归能力
重点、难点:
对等比数列的判断,通项公式和前 -
2.3 等比数列(范文模版)
怀仁十一中高中部数学学案导学(三十三——1)2.3 等比数列主备人袁永红教学目的:1.掌握等比数列的定义.2.理解等比数列的通项公式及推导教学重点:教学难点:学习关键:自学指导1.等比
-
等比数列复习题
等比数列[重点]等比数列的概念,等比数列的通项公式,等比数列的前n项和公式。 1.定义:数列{an}若满足an1=q(q0,q为常数)称为等比数列。q为公比。 an2.通项公式:an=a1qn-1(a10、q0)
-
28 等比数列[范文大全]
【2012高考数学理科苏教版课时精品练】作业28第三节 等比数列1.(2010年高考福建卷)在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________.解析:∵S3=a1+a2+a3
-
等比数列性质(本站推荐)
等比数列
1,在等比数列an中,已知a3a636,a4a718,an
12
,求n。
2,在1与100之间插入n个正数,使这n个数成等比数列,求插入的n个数的积。 3,在等比数列an中,若a22,a6162,求a10。
4,在等比 -
等比数列说课稿
《等比数列》的说课稿
说课人:XX
今天我说的课题是《等比数列》。主要研究的问题是:等比数列内容的介绍及通项公式的推导。下面我将从以下几个方面阐述这节课。
一:说教材
本节 -
等比数列第二节
课题:等比数列及其前N项和(2)
学习目标:掌握等比数列的定义,通项公式和前n项和的公式及性质,并能利用这些知识解
决有关问题,培养学生的化归能力
重点、难点:
对等比数列的判断,通项 -
等比数列五篇范文
等比数列
一、等比数列的基本定义
1.等比数列定义:
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这......
个数列就叫做等比数列,这个常数叫做等比数列的 -
等比数列讲义
等比数列一 知识点回顾1. 等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于_______,那么这个数列叫做等比数列,这个常数列叫做等比数列的________,用字母
-
等比数列教案
等比数列(复习课)学案一.基本要求: ① 理解等比数列的概念;② 掌握等比数列的通项公式与前n项和公式及应用③ 了解等比数列与指数函数的关系发展要求:①掌握等比数列的典型性质及
-
证明等比数列
证明等比数列记Cn=an*a(n+1)cn/c(n-1)=an*a(n+1)/an*a(n-1)=a(n+1)/a(n-1)=3a(2n-1)=3*a(2n-3)a(2n)=3*a(2n-2)bn=a(2n-1)+a(2n)=3*a(2n-3)+3*a(2n-2)=3(bn-1)因此bn/b(n-1)