专题:函数的值域与最值教案
-
函数的值域与最值教案
专题课函数的值域与最值 教材分析:1.值域是函数的三要素之一,函数的值域与最值,特别是最值是高考重点,而且考察的题型涉及选择、填空、解答题. 2.值域与最值知识在教材中比较分
-
函数的值域与最值的求法一教案[五篇范例]
函数的值域与最值的求法一(2课时) 2011年2月14号 星期一 重难点:函数值域与最值的求法 口诀:分式分,单调单,抛物找轴最关键;绝对脱,根式换,化为二次方程判; x213x1、观察法: 例题: ①y=
-
函数值域问题
努力今天成就明天 知识就是财富 求分式函数值域的几种方法 求分式函数值域的常见方法 1 用配方法求分式函数的值域 如果分式函数变形后可以转化为y配方,用直接法求得函数的值
-
2015二次函数与最值问题
2015年中招专题---二次函数与最值问题 1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式; (2)点P为抛物线对称轴上的
-
二次函数的最值教案
丰林中学 任志库 一、教学目标(一)知识与技能 1、会通过配方或公式求出二次函数的最大或最小值; 2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求
-
分式函数值域解法
分式函数值域解法汇编甘肃省定西工贸中专文峰分校 张占荣函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系
-
二次函数的最值问题教案
二次函数的最值问题 莘庄职校 :吴翩 班级:莘庄职校03级(4)班2003/12/4 [教学目标] 1、 2、 3、 4、 使学生掌握二次函数在给定区间上最值的理论和方法。 引入数形结合和分类讨论
-
二次函数最值问题
《二次函数最值问题》的教学反思 大河镇第二中学姚朝江 本节课的教学目标是:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数知识解决实际问题
-
高考数学解析几何最值问题常用技巧-分式函数值域问题分类导析
分式函数值域问题分类导析求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决解析几何有关最值问题的一个重要工具.本文就中学阶段出现的各种类
-
高一数学函数值域解题技巧
一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方
-
求函数值域的方法
求函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;
②逆求法(反求法):通过反解x,用y 来表示 ,再由 x的取值范围,通过解不等式,得出 y的取值范围;
④换元法:通过变量 -
二次函数的最值问题修改版
利用数形结合法解决二次函数在闭区间 上的最值问题 数学组:王勇 一、教学目标: 1. 理解二次函数的最值概念,掌握二次函数的最值求法; 2. 培养学生数形结合的能力和将数学问题转化
-
二次函数最值问题参考答案范文合集
精英辅导学校 贾天宇 2013.7.17. 二次函数最值问题 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为
-
含参二次函数最值问题探讨
含参二次函数最值问题探讨 甘肃畜牧工程职业技术学院 张发荣733006 二次函数模型是重要的函数模型,在北师大版高中《数学》新教材中占了大量的篇幅,详尽介绍了二次函数的性质
-
二次函数的最值问题
二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1
-
二次函数的最值问题
涟水县第四中学(红日校区)周练专用纸 初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.- 9999222.抛物线y=ax+bx
-
函数的最值教案设计(5篇)
目的 :(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入
-
函数最值教学设计 3
新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年10月10 日 课题:高三数学一轮复习3.3导数在函数求最大值和最小值中的应用 三 1、知识目标 1.利用导数求函