专题:函数极限的定义习题
-
函数极限习题(精选5篇)
习题1—21.确定下列函数的定义域:(1)y;2x9(4)y2.求函数1sinyx0(x0)(x0)(2)ylogaarcsinx;(3)y2; sinx1x1(5)yarccosloga(2x3);loga(4x2)x22的定义域和值域。3.下列各题中,函数f(x)和g(x)是否相同
-
函数极限的定义证明
习题13
1. 根据函数极限的定义证明:
(1)lim(3x1)8;x3
(2)lim(5x2)12;x2
x244;(3)limx2x2
14x3
(4)lim2.
x2x12
1证明 (1)分析 |(3x1)8||3x9|3|x3|, 要使|(3x1)8| , 只须|x3| -
利用函数极限定义证明115篇
习题2-2
1. 利用函数极限定义证明:
. limxsinx01x0;x|1,则当 0|x| 时, 有 证明: 对于任意给定的正数 0, 取 , 因为 |sinx1x1xxsin|x|sin|x|,所以limxsinx00.
2.利用无穷大量 -
关于二元函数极限定义的教学探讨
关于二元函数极限定义的教学探讨 【摘要】本文对二重极限的两种不同定义进行了比较,指出了二重极限与二次极限的异同,并通过具体的例子加深理解. 【关键词】二重极限;二次极
-
§1-1 函数极限暂时的定义
第1章函数的极限和连续函数近代微积分是建立在近代极限理论的基础上,可是近代极限理论对于刚步入大学的一年级大学生来说,是很难接受的。为了减少初学者学习微积分的难点,我们
-
函数极限
习题
1.按定义证明下列极限:
limx6x5=6 ; lim(x2-6x+10)=2; x2x
x251 ; lim lim2xx1x2
limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf (x) ≠ A. xx0 -
函数极限
《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些
-
函数极限
数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际
-
函数极限与连续习题(含答案)
1、已知四个命题:(1)若
(2)若
(3)若
(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续, -
用定义证明函数极限方法总结
144163369.doc第 1 页 共 4 页用定义证明函数极限方法总结:用定义来证明函数极限式limf(x)c,方法与用定义证明数列极限式类似,只是细节xa不同。方法1:从不等式f(x)c中直接解出(
-
函数与数列极限的定义区别
导读:极限是研究函数最基本的方法,它描述的是当自变量变化时函数的变化趋势.要由数列极限的定义自然地过渡到函数极限的定义,关键在于搞清楚 数列也是函数这一点.数列可看作一
-
函数极限习题与解析[5篇范例]
函数与极限习题与解析 (同济大学第六版高等数学) 一、填空题 1、设f(x)2xlglgx ,其定义域为。 2、设f(x)ln(x1) ,其定义域为。 3、设f(x)arcsin(x3) ,其定义域为。 4、设f(x)的定
-
多元函数的极限与连续习题
多元函数的极限与连续习题
1. 用极限定义证明:lim(3x2y)14。 x2y1
2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。
(1)f(x,y)xy; xy
f(x,y)(xy)s -
极限操作定义
极限操作定义:在对手技能释放的瞬间 用自己的技能或者道具化解对手技能。
妙E秒羊秒吹秒C的极限操作的可能性分析:以张飞为例子,若阴影地飞出来的张飞的T妙吹妙羊的可能性几乎 -
函数极限证明
函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2
-
1-2函数极限
高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限
-
函数极限概念
一. 函数极限的概念
1.x趋于时函数的极限
设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当 -
2.3函数极限
高三极限同步练习3(函数的极限)
求第一类函数的极限
例1、讨论下列函数当x,x,x时的极限:
1(1)f(x)1 2
(2)f(x)x1 x1
(x0)2(3)h(x)x2 x0)x1求函数的左右极限
例2、讨论下列函数在点x1处的