专题:柯西不等式及应用
-
柯西不等式及应用含答案
一、柯西不等式:(a)(b)(akbk)2等号成立的条件是akbk(k1,2,3n)2k2kk1k1k1nnn二维柯西不等式:(x1x2y1y2)2(x12y12)(x22y22)证明:(用作差法)(x1y1)(x2y2)(x1x2y1y2)2x1y2x2y12x1x2y1
-
柯西不等式的证明及应用
柯西不等式的证明及应用(河西学院数学系01(2)班甘肃张掖734000)摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解
-
关于柯西不等式的证明
关于柯西不等式的证明王念数学与信息学院 数学与应用数学专业 07 级 指导老师:吴明忠摘要:研究柯西不等式的多种证明方法,得到一些有用的结论,并简单介绍一些它的应用。关键词:柯
-
柯西不等式的证明
柯西不等式的证明二维形式的证明(a^2+b^2)(c^2+d^2) (a,b,c,d∈R)=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2=(ac+bd)^2+(ad-b
-
柯西不等式的小结
柯西不等式的小结 浙江省余姚中学 徐鹏科 315400 柯西不等式是数学分析和数学物理方程研究中一个非常重要的不等式,普通高中数学新课程把它列入选修内容,然而对于浙江等省份而
-
利用柯西不等式证明不等式[范文模版]
最值
1.求函数yx24
x
,(xR)的最小值。2.求函数yx4x
2,(xR
)的最小值。
xR且x2y3.设2
1,求xy2的最大值
4.设x,y,z为正实数,且x+y+z=10,求4x19
yz
的最小值。
已知:x2
5.4
y21 -
柯西不等式与排序不等式练习题
2013年高中数学IB模块选修4-5专题测试(一)试题内容:柯西不等式与排序不等式 试卷总分:120分考试时间:60分钟一、 选择题(共8小题,每题5分,共40分) 1、 a,b,c,dR,不等式ab22c2d2acbd取
-
数学研究性学习柯西不等式 排序不等式(共5则)
2010年南师附中数学研究性学习撰稿人 高一九班 陈点柯西不等式和排序不等式的多种证明方法(课本延伸课题18)——2010.4 数学研究性学习撰写人 陈点柯西不等式的一般式:适用范
-
高中数学选修4-5:32 一般形式的柯西不等式 学案
3.2 一般形式的柯西不等式【学习目标】1. 掌握一般形式的柯西不等式的判别式法证明,并掌握等号成立的充要条件 2.基本会使用柯西不等式证明不等式、求最值 【自主学习】1. 三
-
经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式
Mathwang几个经典不等式的关系一 几个经典不等式(1)均值不等式设a1,a2,an0是实数aaa12n 111n+a1a2an其中ai0,i1,2,n.当且仅当a1a2an时,等号成立.n(2)柯西不等式设a1,a2,an,b1,b2,
-
数学史话-柯西
柯西(Cauchy,Augustin Louis 1789-1857),十九世纪前半世纪的法国数学家。在大学毕业后当土木工程师,因数学上的成就被推荐为科学院院士,同时任工科大学教授。后来在巴黎大学任教授
-
(no.1)2013年高中数学教学论文 柯西不等式在解题中的几点应用 新人教版★
知识改变命运百度提升自我 本文为自本人珍藏 版权所有仅供参考 柯西不等式在解题中的几点应用 摘要:本文利用怎样运用柯西不等式解题的技巧,介绍了柯西不等式在解等式、不等式
-
均值不等式及其应用
教师寄语:一切的方法都要落实到动手实践中高三一轮复习数学学案均值不等式及其应用一.考纲要求及重难点要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值
-
均值不等式应用
均值不等式应用一.均值不等式22ab1. (1)若a,bR,则ab2ab(2)若a,bR,则abab时取“=”) 2222. (1)若a,bR*,则ab(2)若a,bR*,则ab2ab(当且仅当ab时取“=”) 2ab(当且仅当ab时取“=”(3)若a
-
柯西施瓦茨不等式证明
柯西不等式的证明 数学上,柯西-施瓦茨不等式,又称施瓦茨不等式或柯西-布尼亚科夫斯基-施瓦茨不等式,是一条很多场合都用得上的不等式;例如线性代数的矢量,数学分析的无穷级数和乘
-
应用导数证明不等式
应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等
-
切线不等式的应用
利用不等式“xR,exx1”解决高考压轴题 呼和浩特市第二中学 郎砺志 “xR,exx1”这一结论频繁地出现在与导数相关的各种教辅材料中,可以说学生很熟悉这个不等式的结论和证明过
-
均值不等式的应用
均值不等式的应用 教学目标: 1.掌握平均不等式的基础上进而掌握极值定理 2.运用基本不等式和极值定理熟练地处理一些极值与最值问题 教学重点:应用 教学难点:应用 教学方法: