专题:数列通项专题求法总结
-
数列通项公式的求法简单总结
艳阳教育高中数学辅导 数列通项公式的求法类型1 递推公式为an1anf(n)
解法:把原递推公式转化为an1anf(n),利用累加法(逐差相加法)求解。 例1. 已知数列an满足a1解:由条件知:an1a -
数列通项公式的求法教案(推荐5篇)
课题:数列通项公式的求法 课题类型:高三第一轮复习课授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法求通项(3)累乘法求通项,并能灵活地运用
-
浅谈数列极限的求法
浅谈数列极限的求法龙门中小李海东摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。关
-
《数列通项公式》教学设计
《数列通项公式》教学设计 【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班 【授课时间】2009年10月20日晚自习【教学目标】 一、知识目标: 1. 解决形如an+
-
《数列通项公式》教学反思
《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出
-
高中数学 数列通项公式的求法练习新人教A版必修6
数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目2例1.等差数列an是递增数列,前n项和为Sn,且a1,a3,a9成
-
数列通项及用归纳法证明不等式
数列通项及用归纳法证明不等式 例一、 在1与2间插入n个正数a1,a2,a3,,an,使这n+2个数成等比数列;又在1、2间插入n个正数b1,b2,b3,,bn,使这n+2个数成等差数列.记Ana1a2a3an,Bnb1b
-
数列通项公式之数学归纳法
数列通项公式之数学归纳法 1.用数学归纳法证明:2. 已知数列{an}满足a1=a,an+1=1111n++++=(nN*) 2446682n(2n+2)4(n+1)1 2an(1)求a2,a3,a4; (2)推测通项an的表达式,并用数学归纳法加
-
关于递推数列通项公式的测试题
关于递推数列通项公式的测试题
2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。 2Sn1例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;⑵ 数列{an}满足a11且an1an(3n -
高中数学数列求通项公式习题
补课习题(四)的一个通项公式是 ,A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为A 、2B 、3C、 2D、33.在等比数列{an}中, a116,a48,则a7A、4B、4C、2D、
-
求数列的通项公式练习题
求数列的通项公式练习题
一、累加法
例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。二、累乘法
例 已知数 -
数列、数列的通项公式教案(精选5篇)
目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。重点:1数列的概念。按一定次序排列的一列数
-
根据数列递推公式求其通项公式方法总结
根据数列递推公式求其通项公式方法总结 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造
-
不动点法求数列通项的证明
对于an1AanB的递推式,两端减x后得到 anC
(Ax)an(BCx)AxBCx(an) anCanCAx
BCx,这个方程与在递推式中令an1an得的方程是Axan1x为了能构成等比数列,则令x
一样的,有点类似于令f(x)= -
初中数学复习专题:求数列通项方法汇总
5.1由递推公式求通项公式的方法总结.已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法是灵活多变的,构造的技巧性
-
学案31 数列的通项与求和
4数列的通项与求和导学目标: 1.能利用等差、等比数列前n项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的
-
几类递推数列的通项公式的求解策略
http://jsbpzx.net.cn/ 蒲中资源网 几类递推数列的通项公式的求解策略 已知递推数列求通项公式,是数列中一类非常重要的题型,也是高考的热点之一.数列的递推公式千变万化,由递推
-
〈〈求数列通项专题〉〉高三数学复习教学设计方案
你如果认识从前的我,也许会原谅现在的我。 〈〈求数列通项专题〉〉高三数学复习教学设计方案 课题名称 求数列通项(高三数学第一阶段复习总第1课时) 科 目 高三数学 年级 高三