专题:数列的递推公式练习
-
数列的递推公式教案
数列的递推公式教案 普兰店市第六中学陈娜 一、 教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通
-
关于递推数列通项公式的测试题
关于递推数列通项公式的测试题
2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。 2Sn1例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;⑵ 数列{an}满足a11且an1an(3n -
高中数学数列递推定理
定理(二阶线性递推数列)
已知数列{an}的项满足an2pan1qan,a1=a,a2=b,nN+,称方程x2pxq0为数列an的特征方程。若x1,x2是特征方程的两个根,则
n1n1
(1)当x1x2时,数列an的通项为anAx1Bx2, -
几类递推数列的通项公式的求解策略
http://jsbpzx.net.cn/ 蒲中资源网 几类递推数列的通项公式的求解策略 已知递推数列求通项公式,是数列中一类非常重要的题型,也是高考的热点之一.数列的递推公式千变万化,由递推
-
根据数列递推公式求其通项公式方法总结
根据数列递推公式求其通项公式方法总结 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造
-
高中数学-公式-数列
数列
1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。 22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。
na1(q1)nn12、等比数列的通 -
高中数学求递推数列的通项公式的九种方法(五篇范文)
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和
-
数列求和公式证明
1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边数学归纳法可以证也可以如下做 比较有技巧性n^2=n(n+1)-n1^2+2^2+3^2+......+n^2=1*2-1+2*3-2+....+n(n+1)-n=1*2+2*
-
数列练习3
数列练习3(等比数列)
1.等比数列an的前n项和为Sn,若
S6S3
3,则
S9S6
;
2.若等比数列an的前n项和为Sn,且S32,S618,则
S10S5
;
3.设数列an,bn都是正项等比数列, Sn,Tn分别是 -
高考数列专题练习(汇总)
数列综合题1.已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=,求数列的前n项和。2.已知递增的等比数列满足是的等差中项。(Ⅰ)求数列的通项公式;(Ⅱ)若是数列的前项和,求3.等比数列为递增
-
数列练习(自)
数列练习
一选择题
1等差数列{an}中,d=2,an=11,Sn=35,则a1为
A.5或7
C.7或-1B.3或5D.3或-1.
1112.△ABC三边为a、b、c,若,,b所对的角为 abc
A.锐角B.钝角
C.直角D.不好确定
3.设△ABC的三 -
数列问题练习大全
数列练习
1、(09重庆理)设a12,an1
2a2
,,nN*,则数列bn的通项公式bn.bnn
an1an1
1
2、(08江西理)在数列an中,a12,an1anln1,则an=?
n
3、(10全国理)设数列{an}满足a1=2,an+1-an=3·22n-1.
求数 -
高中数学数列公式及结论总结(★)
高中数学数列公式及结论总结一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k -
高中数学教学情景创设优秀案例15:递推数列教学
递推数列教学情境创设案例 在递推数列教学时,创设有趣的游戏情境, 学生喜欢做游戏,简短有趣的游戏也能激发学生的学习兴趣。 案例: 汉诺塔问题 起源传说:相传在盘古开天辟地创造
-
数列练习学生 2
33. (山东省济南市2013年1月高三上学期期末文18) (本小题满分12分)
已知等差数列an的前n项和为Sn,且满足a24,a3a417.
(1)求an的通项公式;
(2)设bn2an2,证明数列bn是等比数列并求其前n -
数列练习2 等比数列
探究点1 等比数列中基本量的计算1、在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=__________.2、设Sn为等比数列{an}的前n项和,8a2+a5=0,则等于3、等比数列
-
《数列通项公式》教学设计
《数列通项公式》教学设计 【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班 【授课时间】2009年10月20日晚自习【教学目标】 一、知识目标: 1. 解决形如an+
-
《数列通项公式》教学反思
《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出