专题:数列题型总结及答案
-
数列综合题型总结
数列求和
1.(分组求和)
(x-2)+(x2-2)+…+(xn-2)
2.(裂相求和)
111 1447(3n2)(3n1)
3.(错位相减)
135232222n12n
12222323n2n
4.(倒写相加)
1219984x
)f()f() x 求值设f(x),求f(1999199 -
数列典型题型
数列典型题型
1、已知数列an中,Sn是其前n项和,并且Sn14an2(n1,2,),a11,
⑴设数列bnan12an(n1,2,),求证:数列bn是等比数列; a,(n1,2,),求证:数列cn是等差数列; ⑵设数列cnn
2n
⑶求数 -
数列题型及解题方法归纳总结
文德教育 知识框架 列数列的分类数数列的通项公式函数的概念角度理解数列的递推关系等差数列的定义anan1d(n2)等差数列的通项公式ana1(n1)d等差数列n等差数列的求和公式Sn2(
-
新课程高中数学数列题型总结
高中数学数列复习题型总结1.等差等比数列 (n1)S12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n2SnSn1(n1)时,an=两步,最后考虑a1是否满足后面的an.基础题型题型一:求值类的计算题(多关
-
高考数列题型总结(优秀范文五篇)
数列 1. 2. 3. 4. 5. 6. 坐标系与参数方程 1. 2. 3 4. . 5. 6.
-
数列求和经典题型分析
数列求和的常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法:一、直接(或转化)由
-
数列测试题及答案[合集五篇]
数列一、选择题1、(2010全国卷2理数)如果等差数列an中,a3a4a512,那么a1a2...a7 (A)14(B)21(C)28(D)35 【答案】C【解析】a3a7)4a53a412,a44,a1a2aa1a77(27a428 2、(2010辽宁文数)设Sn为等
-
高考数列试题及答案
数列试题1.已知等比数列{an}的公比为正数,且a3·a9=2a5,a2=1,则a1= () A.2.已知为等差数列,B。1C. 3D.7 ,则等于() 212B.。C. 222D.2A. -13.公差不为零的等差数列{an}的前n项和为Sn.若a4
-
数列测试题及答案5则范文
数列测试题及答案:一、选择题:本大题共12小题,每小题5分,共60分.1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为A.6 B.7 C.8 D.9解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.答案:A2.若等差数列{an}的前n项
-
高考中的数列热点题型研究
龙源期刊网 http://.cn
高考中的数列热点题型研究
作者:朱晶
来源:《高考进行时·高三数学》2013年第03期
【例6】 (2012·高考(湖南文))某公司一下属企业从事某种高科技产品的生 -
数列解题技巧归纳总结
知识框架 数列的分类数列的概念数列的通项公式函数角度理解数列的递推关系等差数列的定义anan1d(n2)等差数列的通项公式ana1(n1)d等差数列nn(n1)等差数列的求和公式S(aa)nad
-
公务员数列归纳整理总结
数列归纳整理总结1、 带有负数的数列; 2、 带有零的数列 ;
3、 带有分数的数列; 4、带有相同数字的数列 ;
5、带有“1”的数列; 6、 数列中带有“忽然变大的数字”的数列
一、带 -
数列知识点总结
数列知识总结
一、基本概念
1、数列:按照一定顺序排列着的一列数.
数列的项、数列的项数
表示数列的第n项与序号n之间的关系的公式通项公式:不是所有的数列都有通项公式
符号 -
数列知识点总结
必修⑤ 第二章 数列知识总结一、等1.等差数列定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项;数列可以看作一个定义域为正整数集N(或它的有限子集{
-
第二章 数列测试题(题目+答案)
第2章 数列 单元测试 一、选择题(本大题共10小题,每小题5分,共50分) 1. 在数列1,1,2,3,5,8,x,21,34,55中,x等于( ) A.11B.12 C.13D.141答案:C anan1an2 2.21与21,两数的等比中项是 A.1B.1 C.1
-
数列专题
数列专题朱立军1、设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (1)求数列{an}的通项公式an;(2)设数列 1a 的前n项和为T11n,求证:nan+15≤Tn<42、设数列a2n1n满足a1+3a2+3a3+…+3an=n3,a∈N*
-
数列解题技巧归纳总结-打印
数列解题技巧归纳总结 等差数列前n项和的最值问题: 1、若等差数列an的首项a10,公差d0,则前n项和Sn有最大值。 (ⅰ)若已知通项an,则Sn最大an0; an10q的非零自然数时Sn最大; 2p(ⅱ)若已
-
数列求和方法总结
数列的求和 一、教学目标:1.熟练掌握等差数列与等比数列的求和公式; 2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算; 3.熟记一些常用的数列的和的公式. 二