专题:数列型不等式证明
-
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式 我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
数列不等式的证明
数列和式不等式的证明策略
罗红波洪湖二中高三(九)班周二第三节(11月13日)
数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其 -
高中数学_利用定积分证明数列和型不等式(定稿)
利用定积分证明数列和型不等式湖北省阳新县高级中学 邹生书我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较
-
利用定积分证明数列和型不等式剖析[大全]
利用定积分证明数列和型不等式 我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
放缩法证明数列不等式
放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用
-
放缩法证明数列不等式
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n
-
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
探索数列不等式的证明
探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归
-
数列与不等式证明专题五篇
数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条
-
数列不等式推理与证明
2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数
-
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
利用方所发证明数列型不等式压轴题
思想方法一、函数与方程思想姓名:方法1构造函数关系,利用函数性质解题班别:根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构
-
强化命题证明一类数列不等式
该文发表于《中学数学教学参考》2006年第12期强化命题证明一类数列不等式201203华东师大二附中任念兵数列不等式是近年来高考和竞赛中的热点题型,其中一类形如in0n1C(C为常数)a
-
构造函数证明数列不等式答案
构造函数证明数列不等式答案例1.求证:ln22ln33ln44ln33nn3n5n66(nN).*解析:先构造函数有lnxx1lnx11,从而xxln22ln33ln44ln33nn31(n121313n)因为121313n1123111111111nnn21345
-
用数学归纳法证明数列不等式
【例1】(2012全国大纲卷理22)函数f(x)x22x3,定义数列xn如下:x12,xn1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标. (1)证明:2xnxn13; (2)求数列xn的通项公式. 【证】(1)证:直
-
裂项放缩证明数列不等式
策略一、裂项放缩证明数列不等式若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。 例1-1、(全国I理-22压轴题)设数列an的前n项的和Sn项an;(Ⅱ)设Tn2n43a
-
数列不等式的证明举例(5篇)
1. 已知数列an满足a11,an12an1nN (Ⅰ)求数列an的通项公式;(Ⅱ)若数列bn满足4b114b214b314bn1(an1)bn,证明:bn是等差数列; (Ⅲ)证明:1112nN aa3an13 2分析:本例(1)通过把递推关系式转化成等