专题:数列专题练习题
-
数列简单练习题
等差数列 一、填空题 1. 等差数列2,5,8,…的第20项为___________. 2. 在等差数列中已知a1=12, a6=27,则d=___________ 3. 在等差数列中已知d,a7=8,则a1=_______________ 4. (ab)2
-
数列练习题
温岭点学教育中小学专业1对1文化课程辅导一切为了孩子,为了孩子的一切.... 已知数列满足a1=1,an+1=2an+1(n∈N*) 。 求证数列{an+1}是等比数列; 求{an}的通项公式.设二次方程
-
等差数列数列练习题(5篇)
一、选择题
35241.已知为等差数列,1
A. -1B. 1C. 3D.7 aaa105,aaa699,则a20等于
2.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于
A.13B.35C.49D. 63
3.等差数列{an}的前n项和 -
高中数学三角函数及数列练习题
一、选择题(每题5分,共35分) 1.若sin θcos θ>0,则θ在. A.第一、二象限 C.第一、四象限 B.第一、三象限 D.第二、四象限 2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是( ) A、奇函数
-
5136-高三数学练习题(数列)
高三数学(数列)练习题 如是递推关系x1,x2是an1panqan1(n2)的特征方程x=px+q的两个根,那么当nnnx1≠x2时,anx1;当x1=x2时,an(.n)x1。其中α,β是由初始值确定x22的常数。 1.等差
-
职高数列,平面向量练习题[推荐]
职高数列,平面向量练习题 一. 选择题: (1) 已知数列{an}的通项公式为an=2n-5,那么a2n=。 A 2n-5 B 4n-5 C 2n-10 D 4n-10 (2)等差数列-7/2,-3,-5/2,-2,··第n+1项为 A 12(n7)B 1nn2
-
数列求和练习题(共5则)
数列求和练习题
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
1、 等差数列求和公式:Snn(a1an)n(n1)na1d22
(q1)na1n2、等比数列求和 -
求数列的通项公式练习题
求数列的通项公式练习题
一、累加法
例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。二、累乘法
例 已知数 -
公务员行测-数列-数字推理-练习题
1, 6, 20,56,144, A.256 B.312 C.352 D.384 3, 2, 11, 14, 34 A.18 B.21 C.24 D.27 1,2,6,15,40,104, A.329 B.273 C.225 D.185 2,3,7,16,65,321, A.4546 B.4548 C.
-
图形和数列的变化规律教案及练习题
图形和数列的变化规律教案及练习题 本资料为woRD文档,请点击下载地址下载全文下载地址2.9.2图形和数列的变化规律 课 型 新 授 使用人 主备人 修改人 教学内容: 人教版义务教
-
数列专题
数列专题朱立军1、设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1). (1)求数列{an}的通项公式an;(2)设数列 1a 的前n项和为T11n,求证:nan+15≤Tn<42、设数列a2n1n满足a1+3a2+3a3+…+3an=n3,a∈N*
-
求数列前n项和练习题(5篇范例)
求数列前n项和练习题 1等比数列an的各项均为正数,且2a13a21,a329a2a6.(1)求数列an的通项公式. 1设 bnlog3a1log3a2......log3an,求数列的前项和. bn2设数列an满足a12,an1an3
-
数列的前n项和练习题(共5则)
数列的求和训练 1.错位相减法求和:如:an等差,bn等比,求a1b1a2b2anbn的和. 1.求和Sn12x3x2 2.求和:Snnxn1 123n23n aaaa 2.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下
-
数列教案
乐清体校 黄智莉 教学目标: 知识与技能:理解数列的有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的前几项甚至任意一项 过程与方法:通过对具体
-
数列教案
数列教案 教材分析 1. 地位作用 数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一
-
数列复习
一、等差数列的判定
1、利用定义法进行判定:数列复习若数列an满足:anan1d,n2,nNan1and,nN*a为等差数列 nn*a为等差数列 例题1、在数列{an}中,a1=-3,an=2an-1+2n+3(n≥2,且n∈N*).
求 -
简单数列教案
北外附校小学部2010-2011学年度第一学期 二年级数学思维训练试题(认识简单数列教案) 我们把按一定规律排列起来的一列数叫数列. 在这一讲里,我们要认识一些重要的简单数列,还要
-
数列证明
数列证明 1、数列{an}的前n项和记为Sn,已知a11,an1(Ⅰ)数列{2、已知数列an的前n项和为Sn,Snn2Sn(n1,2,3).证明: nSn}是等比数列; (Ⅱ)Sn14an. n1(an1)(nN). 3(Ⅰ)求a1,a2; (Ⅱ)求证数列a