专题:向量法证明立体几何

  • 浅谈用向量法证明立体几何中的几个定理

    时间:2019-05-13 06:37:21 作者:会员上传

    浅谈用向量法证明立体几何中的几个定理15号海南华侨中学(570206)王亚顺摘要:向量是既有代数运算又有几何特征的工具,在高中数学的解题中起着很重要的作用。在立体几何中像直线与

  • 立体几何证明的向量公式和定理证明(最终定稿)

    时间:2019-05-14 17:59:12 作者:会员上传

    高考数学专题——立体几何遵循先证明后计算的原则,即融推理于计算之中,突出模型法,平移法等数学方法。注重考查转化与化归的思想。立体几何证明的向量公式和定理证明附表2

  • 向量法证明不等式

    时间:2019-05-13 06:36:58 作者:会员上传

    向量法证明不等式高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上

  • 用向量法证明

    时间:2019-05-13 06:37:13 作者:会员上传

    用向量法证明步骤1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0接着得到

  • 向量法在立体几何中的运用

    时间:2019-05-13 06:37:25 作者:会员上传

    龙源期刊网 http://.cn
    向量法在立体几何中的运用
    作者:何代芬
    来源:《中学生导报·教学研究》2013年第27期
    摘 要:在近几年的高考中利用向量的模和夹角公式求立体几何中的线段

  • 向量法证明正弦定理

    时间:2019-05-13 06:37:28 作者:会员上传

    向量法证明正弦定理证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角

  • 法向量在立体几何解题中的应用

    时间:2019-05-13 06:37:18 作者:会员上传

    龙源期刊网 http://.cn
    法向量在立体几何解题中的应用
    作者:魏庆鼎
    来源:《理科考试研究·高中》2013年第08期
    高中数学教材引进了向量知识以后,为我们解决数学问题提供了一套

  • 立体几何证明

    时间:2019-05-12 17:22:38 作者:会员上传

    立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(

  • 立体几何证明

    时间:2019-05-12 17:22:40 作者:会员上传

    1、(14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.A2.如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱交B1C于点F,BB

  • 余弦定理的证明 向量法[五篇范文]

    时间:2019-05-14 11:44:17 作者:会员上传

    ∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又

  • 向量法证明正弦定理[最终版]

    时间:2019-05-14 15:40:52 作者:会员上传

    向量法证明正弦定理证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的

  • 用向量法证明平行关系

    时间:2019-05-13 06:37:21 作者:会员上传

    2010 山东省昌乐二中 高二数学选修2-1导学案时间:2010-12-21班级:姓名:小组:教师评价:课题: 3.2.1用向量法证明平行关系编制人:刘本松、张文武、王伟洁审核人:领导签字: 【使用说明

  • 用向量法证明直线与直线平行

    时间:2019-05-12 17:22:20 作者:会员上传

    用向量法证明直线与直线平行、直线与平面平行、平面与平面平行导学案一、知识梳理1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。2、

  • 《立体几何VS空间向量》教学反思

    时间:2019-05-12 23:51:24 作者:会员上传

    我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法

  • 空间向量方法解立体几何教案

    时间:2019-05-13 06:37:16 作者:会员上传

    空间向量方法解立体几何【空间向量基本定理】例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分数x、y、z的值。 成定比2,N分PD成定比1,求满足的

  • 立体几何证明方法

    时间:2019-05-12 17:22:21 作者:会员上传

    立体几何证明方法 一、线线平行的证明方法:
    1、利用平行四边形。2、利用三角形或梯形的中位线
    3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线

  • 立体几何垂直证明范文

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等

  • 文科立体几何证明

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何证明题常见题型1、如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC1,E是PC的中点,作EFPB交PB于点F.(I) 证明: PA∥平面EDB;(II) 证明:PB⊥平面EFD; (III) 求三棱锥