第一篇:excel实验学习心得
Excel在财务管理中应用的学习总结
通过这门课程的学习,我首先充分认识到了excel在我们以后工作中的重要性,能够熟练的掌握excel软件是我以后从事财务工作不可缺少的一种专业技能。随着市场经济的发展,市场竞争的加剧,各个企业的经济环境不断地发生变化,企业对会计职能的要求,已从单纯的会计核算型向财务管理型发展。这要求企业必须充分利用现有的财务信息资源,准确地分析当前的财务状况,并对未来的财务状况进行预测分析,以便为管理层提供较好的决策方案。而excel满足了企业这个需要,因为人们可以利用它方便地记录和分析财务数据,编辑数学公式,绘制图表及编辑文本等,还可以建立财务分析模型,能够为管理层提供决策信息。
在学习的过程中,我觉得最重要的一点就是上课必须集中精神,观察老师在课堂上操作的流程和步骤,这样才能更顺利的完成实验。受条件的限制,我们不能在课堂上在老师的指导下操作,所以上课集中精力听课是非常重要的。在实验课程上,至少应自主完成课本上要求的实验,在这个基础上,我还在课外通过网络等补充了课程上的不足,了解了课本上没有提及的excel其他工具及函数。在学习中我掌握了我们平时所不知懂的知识,同时加强和巩固了我对EXCEI在财务中的运用。实验报告也是我学习的一个部分,课前预习时写好实验报告,这样就可以在实验前能够把握实验的基本流程,就能够提高完成实验的速度。完成实验后对实验的补充也是很重要的,在补充实验报告的过程中,尽量不要翻阅课本,凭自己的对实验的记忆完成是最有效的。在所有的实验课程中,我都能够按时完成实验,但我明白,仅仅依靠实验上学到的操作知识是不够的,而且光在实验中练习,没有课后的复习,时间长了也会遗忘,所以我认为,在以后的学习和工作中应该注意积累,及时复习巩固所学知识。在我们其他的专业课程中,有很多值得分析的财务资料,比如财务报表分析这门课程,书本上提供了很多案例报表,我们可以此建立财务分析模型,或者在网上下载相关资料练习,还可以在网上搜索网上课程学习。还有一点值得注意,微软公司提供了多种版本,它们虽然是大同小异,但毕竟还是有区别的,我们应该熟练掌握各种版本的使用。
总之,在以后的工作和学习中,应该在巩固的基础上不断的完善。
第二篇:实验力学学习心得
实验力学学习心得
曾经对力学的认识很懵懂,以前在我心中力学是一个很抽象的东西,我一直认为力学更多的是在图纸上的演算与推导,凡是与力相关的事物都属于力学范畴。对于力学应用方面的理解,也只是粗略的知道它会应用于航空航天、机械、土木、交通、能源、化工、材料、环境、船舶与海洋等等,但原理是什么,方法是怎样的,我想也绝不只是我最初理解的只是一些受力分析那么简单。而对实验力学这门课的学习则是让我们知道了目前所学的这些知识与它所应用的工程实际相联系的途径和方法。
简单的来说,实验力学就是用实验的方法求解力学问题。即用实验方法测量在力的作用下,物体产生的位移、速度、加速度、应变(形变)、应力、振动频率等物理量。工程实验力学中对实验力学的定义是用实验方法测量应变、应力和位移。也称为实验应力分析。在我现在学习了这门课之后的理解,实验力学是解决工程问题中力学问题的一个重要环节,是求解其力学问题的中间环节,通过实验力学方法测得所需物理量,最终求出结果。
通过课程认知,我了解了解决力学问题的方法主要有两个:理论方法和实验方法。理论方法就是理论方法就是将实际问题转化为数学模型,建立方程,然后求解。它主要有解析法和数值法,理论方法的解答是数学模型的解答,只有实际问题与数学模型相符时才是精确的,这也是它的局限性。而我们这学期学的实验力学的方法就是在实际问题上直接测量。我们这学期做了三个实验力学的实验,分别是测量电桥特性,动态应变测量和光测弹性学方法。这三个实验就用到了实验应力分析的方法——电测,振动测量,光测。实验力学的实验结果更可靠,并且可以发现新问题,开创新领域。不过它也有它的缺点就是测量都有误差,并且实验仪器和材料昂贵,这也导致了费用高。不过,理论分析和实验分析是相辅相成。理论的建立需要实验分析的成果,发现新问题,建立新理论。实验设计和实施需要理论分析做指导。复杂问题需要需要理论与实验共同完成。
正如我刚刚说的,误差是实验方法的一个弊端,也是不可避免的,但随着测试手段的改进和测量者水平的提高,可以减少误差,或者减少误差的影响,提高实验准确程度。实验误差按其产生原因和性质,可以分为系统性误差、偶然性误差和过失误差(粗差)三种。实验力学这门课,同样教会了我们如何去减少误差。比如对称法、初载荷法、增量法消除系统误差。还有通过分析给出修正公式用来消除系统误差,或者定期用更准确的仪器校准实验仪器以减少实验误差,校准时做好记录供以后修正数据用。偶然性误差难以排除,但可以用改进测量方法和数据处理方法,减少对测量结果的影响。例如用多次测量取平均值配合增量法,可以使偶然性误差相互抵消一部分,得到最佳值。过失误差是指明显与实际不符,没有一定的规律。这在我们实验中也会经常出现,通常这些都是由于疏忽大意、操作不当或设备出了故障引起明显不合理的错值或异常值,一般都可以从测量结果中加以剔除。
我们主要做了三个实验,测量电桥特性,动态应变测量和光测弹性学方法。给自己印象最深刻的就是第一个实验。桥路变换接线实验是在等强度实验梁上进行,当时是要在梁的上下表面哥粘贴两个应变片。当时老师在黑板上画了三个图,可是我当时连最基本的图都看不懂,根本不知道哪个是应变片哪个是电阻的意思。接下来在粘应变片的时候也遇到了各种麻烦,应变片倒是没粘好几个,但是手上已经一团糟。好不容易把应变片粘好后,需要用焊锡把电线连上,在仔细琢磨过到底那根线连哪个之后,又遇到了新的麻烦就是那个怎么焊都焊不上,后来找来老师才知道原来是我们那一组的电烙铁有问题,换了个,才继续把这个艰辛的实验做完。这个实验做了不少时间,也着实费了不少的功夫,不过通过这个实验我认识到了自己身上很多的不足但确实学到了不少的东西。对应变电测法有了更深刻的认识。比如电阻应变的半桥接线法和全桥接线法,拉压、扭转、弯曲以及组合变形的电测原理还有记忆犹新的贴片、应变计的正确使用。
我们第二个实验动态应变测量当时是完全用电脑软件操作的。随时间而变的应变叫做动态应变。它会在处在一定的运动状态以及承受的载荷按一 定的规律变化的情况下产生。动态应变测量目的主要有1)记录动态波形2)最大动态应变3)频谱(频率及振幅)4)疲劳强度校核。通过实验,也让我认识到了应变波的两种传播形式:(1)应变从构件表面传递到敏感栅。(2)应变波沿栅长方向的传播。第三个实验是光测弹性学方法,它是利用偏振光通过具有双折射效应的透明受力模型,从而获得干涉条纹图,由于干涉条纹与模型内主应力的大小和方向有一定关系,因此可以直接观察到模型内应力分布情况。但是这种方法的缺点是周期长,成本较高。光弹法是一种模型实验,它的一大特点就是直观性强以及全场显示与分析。它的条纹可直接表示应力分布情况,特别是用于有应力集中的情况。至今想起当时观察到的图像还是会不由的感叹力学模型奇特的美丽。
力学是基础学科,又是技术科学,其发展横跨理工,与各行业的结合是非常密切的。实验力学是将我们所学的基础知识同实际应用相联系的一个重要的桥梁。由于相关行业的发展与国名经济和科学技术的发展同步,使得力学在其中多项技术的发展中起着重要的甚至是关键的作用。我们以后的方向会有很多,既可以从事力学教育与研究工作,又可以从事与力学相关的机械、土木、航空航天、交通、能源、化工等工程专业的设计与研究工作,还可以从事数学、物理、化学、天文、地球或生命等基础学科的教育与研究工作。不仅如此,随着力学学科的发展,本世纪将产生一些新的学科结合点,如生物医学工程、环境与资源、数字化信息等。经典力学与纳米技术一起孕育了微纳米力学将力学知识应用于生物领域产生量生物力学和仿生力学:这些都是近年来力学学科发展的亮点。可以预计,随着社会的发展,力学学科与环境和人居工程等专业的学科交叉也将进一步加强。从这个意义上讲,实验力学的应用也将更为广泛并且不断进步。
很感谢老师这学期为我们传授的知识,受益匪浅。
第三篇:DSP实验学习心得
DSP实验学习心得
论DSP发展前景
DSP 即为数字信号处理器(Digital Signal Processing),是在模拟信号变换成数 字信号以后进行高速实时处理的专用处理器。它的工作原理是将现实世界的模拟信号转换 成数字信号,再用数学方法处理此信号,得到相应的结果。自从数字信号处理器(Digital Signal Processor)问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特 点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥 越来越重要的作用。随着成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成 功应用。DSP 数字信号处理器 DSP 芯片采用了数据总线和程序总线分离的哈佛结构及改 进的哈佛结构,较传统处理器的冯?诺依曼结构具有更高的指令执行速度。其处理速度比最 快的 CPU 快 10-50 倍。在当今数字化时代背景下,DSP 已成为通信、计算机、消费类电 子产品等领域的基础器件,被誉为信息社会革命的“旗手”。
最初的 DSP 器件只是被设计成用以完成复杂数字信号处理的算法。DSP 器件 紧随着数字信号理论的发展而不断发展。DSP发展最快,现在的 DSP 属于第五代产品,它与第四代相比,系统集成度更高,将 DSP 芯核及外围组件综合集成在单一芯片上。这种集成度极高的 DSP 芯片不仅在通信、计算机领域大显身手,而且逐渐渗透 到人们日常消费领域,前景十分可观。近年来,随着通信技术的飞速发展,DSP已经成为信号与信息处理领域里一门十分重要的新兴学科,它代表着当今无线系统的主流发展方向。现在,通信领域中许多产品 都与 DSP 密切联系,例如,Modem、数据加密、扩频通信、可视电话等。而寻找 DSP 芯片来实现算法最开始的目标是在可以接受的时间内对算法做仿真,随后是将波形存储起 来,然后再加以处理。
在短短的十多年 时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前, DSP 芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP 芯片的应用主要有:(1)
信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。(2)通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。(3)语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。(4)图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。(5)军事--如保密通信、雷达处理、声纳处理、导航等。
(6)仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。(7)
自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。(8)
医疗--如助听、超声设备、诊断工具、病人监护等。(9)家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字 电话/电视等 DSP 的发展前景 DSP 的功能越来越强,应用越来越广,达到甚至超过了微控制器的功能,比 微控制器做得更好而且价格更便宜,许多家电用第二代 DSP 来控制大功率电机就 是一个很好的例子。汽车、个人通信装置、家用电器以及数以百万计的工厂使用 DSP 系统。数码相机、IP 电话和手持电子设备的热销带来了对 DSP 芯片的巨大需 求。而手机、PDA、MP3 播放器以及手提电脑等则是设备个性化的典型代表,这 些设备的发展水平取决于 DSP 的发展。新的形势下,DSP 面临的要求是处理速度 更高,功能更多更全,功耗更低,存储器用量更少。
DSP 的技术发展将会有以下 一些走势:(1)系统级集成 DSP 是潮流。小 DSP 芯片尺寸始终是 DSP 的技术发展方向。当前的 DSP 尺寸小、功耗低、性能高。各 DSP 厂商纷纷采用新工艺,改进 DSP 芯核,并将几个 DSP 芯核、MPU 芯核、专用处理单元、外围电路单元、存储单元 统统集成在一个芯片上,成为 DSP 系统级集成电路。(2)追求更高的运算速度和进一步降低功耗和几何尺寸。由于电子设备的 个人化和客户化趋势,DSP 必须追求更高更快的运算速度,才能跟上电子设备的 更新步伐。同时由于 DSP 的应用范围已扩大到人们工作生活的各个领域,特别是 便携式手持产品对于低功耗和尺寸的要求很高,所以
DSP 有待于进一步降低功 耗。按照 CMOS 的发展趋势,依靠新工艺改进芯片结构,DSP 运算速度的提高和 功耗尺寸的降低是完全可能的。
(3)DSP 的内核结构进一步改善。DSP 的结构主要是针对应用,并根据应用 优化 DSP 设计以极大改进产品的性能。多通道结构和单指令多重数据、超长指令 字结构、超标量结构、超流水结构、多处理、多线程及可并行扩展的超级哈佛结 构(SHARC)在新的高性能处理器中将占据主导地位。(4)DSP 嵌入式系统。DSP 嵌入式系统是 DSP 系统嵌入到应用电子系统中 的一种通用系统。这种系统既具有 DSP 器件在数据处理方面的优势,又具有应用 目标所需要的技术特征。在许多嵌入式应用领域,既需要在数据处理方面具有独 特优势的 DSP,也需要在智能控制方面技高一筹的微处理器(MCU)。因此,将 DSP 与 MCU 融合在一起的双核平台,将成为 DSP 技术发展的一种新潮流。DSP 的发展非常迅速,而销售价格逐年降低目前 DSP 的结构、总线、资源和 接口技术都趋于标准化,尤其接口的标准化进展更快。这给从事系统设计的工程 技术人员带来很大机遇,采用先进的 DSP 将会使开发的产品具有更强的市场竞争 力。
近几年来,DSP芯片、应用软件和系统的发展非常迅速,每年增长速度高达40%。其市场驱动力主要是因特网、无线通信、硬盘驱动器、可视电话和会议电视以及其它消费 类电子产品。也就是说,DSP产业的发展依赖于通信技术和通信市场。随着新的通信体 制、传输方式和多媒体智能终端的迅速发展,其算法、标准和规程都需要在实践中不断发 展、改进和优化。DSP编程的灵活性和不断增强的运算能力,同时又将使通信技术向更 高层次迈进。这对通信领域的广大科技人员是一个机遇。抓住这个机遇,我们将大有作为。
通过这几次实验,我初步的对dsp有了一定了解。虽然是在老师们的指导下完成实验要求的,但是我想我还是收获蛮多的。希望在以后的学习生活中能对dsp有更多的学习和研究。
第四篇:运筹学实验学习心得
运筹学实验学习心得:
通过此次运筹学实验,我们小组成员有极大的收获:在一学期为数不多的实验过程中,不仅对运筹学的有关知识有了进一步的掌握,而且学会了通过建立模型解决实际生活中的相关问题。对问题的分析、建模、求解锻炼了我们的思考能力,同时提高了分析、解决问题的能力,也更加了解和熟悉了Excel规划求解的强大功能,提高了我们的计算机应用水平。
同时,我们小组在此次试验中也存在一些不可避免的问题和不足。例如,在分析问题时,设置变量没有清晰的思路;在列约束条件时粗心大意出现差错,导致最终结果的错误从而影响实际问题解决的效果,因此,我们在这方面应该加以注意和改正,在进行建模求解时细心耐心。
除此,我们小组成员也对此门课程提出了一些我们的建议:首先,此门课程是一门有很大实际运用性的学科,故希望黄老师多结合我们实际生活中可能遇到的问题来进行讲解;其次,每次实验课程的时间稍微过长,后面容易出现疲惫,故希望适当减少每次实验课时间而增加实验次数。
最后,课程的学习很快过去,但它对我们掌握运筹学建模问题的要求却并没有随课程的结束而结束。此次实验课的学习提高了我们参加管理模拟决策大赛的技能,为以后的学习和工作打下了坚实的基础,在此感谢黄燕玲老师的细心指导和帮助。
第五篇:DSP实验学习心得
DSP实验学习心得
DSP即为数字信号处理器(Digital Signal Processing),是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器。它的工作原理是将现实世界的模拟信号转换成数字信号,再用数学方法处理此信号,得到相应的结果。自从数字信号处理器(Digital Signal Processor)问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。DSP 数字信号处理器DSP 芯片采用了数据总线和程序总线分离的哈佛结构及改进的哈佛结构,较传统处理器的冯诺依曼结构具有更高的指令执行速度。其处理速度比最快的CPU快10-50倍。在当今数字化时代背景下,DSP 已成为通信、计算机、消费类电子产品等领域的基础器件,被誉为信息社会革命的“旗手”。
最初的DSP器件只是被设计成用以完成复杂数字信号处理的算法。DSP器件紧随着数字信号理论的发展而不断发展。DSP发展最快,现在的DSP属于第五代产品,它与第四代相比,系统集成度更高,将DSP 芯核及外围组件综合集成在单一芯片上。这种集成度极高的DSP 芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。近年来,随着通信技术的飞速发展,DSP已经成为信号与信息处理领域里一门十分重要的新兴学科,它代表着当今无线系统的主流发展方向。现在,通信领域中许多产品都与DSP 密切联系,例如,Modem、数据加密、扩频通信、可视电话等。而寻找DSP芯片来实现算法最开始的目标是在可以接受的时间内对算法做仿真,随后是将波形存储起
来,然后再加以处理。在短短的十多年时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前, DSP 芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP 芯片的应用主要有:(1)信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。(2)通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。(3)语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。(4)图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。(5)军事--如保密通信、雷达处理、声纳处理、导航等。(6)仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。(7)自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。(8)医疗--如助听、超声设备、诊断工具、病人监护等。(9)家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等DSP 的发展前景DSP的功能越来越强,应用越来越广,达到甚至超过了微控制器的功能,比微控制器做得更好而且价格更便宜,许多家电用第二代DSP 来控制大功率电机就是一个很好的例子。汽车、个人通信装置、家用电器以及数以百万计的工厂使用DSP 系统。数码相机、IP 电话和手持电子设备的热销带来了对DSP芯片的巨大需求。而手机、PDA、MP3 播放器以及手提电脑等则是设备个性化的典型代表,这些设备的发展水平取决于DSP 的发展。新的形势下,DSP面临的要求是处理速度更高,功能更多更全,功耗更低,存储器用量更少。
这学期我们学习了DSP的理论课程,也进行了相应的实验,实际操作让我们学习的更加深入。我们的主处理芯片: TMS320VC5502PGF300;
低功耗设计,比上一代 C54XX 器件功耗低 30%左右;
处理速度更快,双乘法器结构,处理速度 600MMACS;
软件程序兼容 C54XX DSP;
片内存贮空间 32K× 16Bit(DARAM)(64K Bytes);
最大外部寻址空间 8M× 16Bit; SDRAM: 1M× 16Bit; 2 路 8bit 板上 A/D 接口;
路的 TLC7528 转换,5M/S,8Bit;
片上 UART 接口,符合 RS232 标准;
8Mbit 扩展 FLASH,存储大量固化程序和数据;
设计有用户可以自定义的开关和测试指示灯;
3U 标准的 DSP 扩展总线,包括数据、地址、I/O、控制; 4 组标准扩展连接器,为用户进行二次开发提供条件;
具有 IEEE1149.1 相兼容的逻辑扫描电路,该电路仅用于测试和仿真; +5V 电源输入,内部+3.3V、+1.26V 电源管理;
高保真语音接口设计,双路语音采集,每路 48K/S; 4 层板设计工艺,稳定可靠;
具有自启动功能设计,可以实现脱机工作;
可以选配多种应用接口板,包括图像板,网络板等; 开发环境
开发 TMS320C55xx 应用系统一般需要以下设备和软件调试工具: 1.通用 PC 一台,安装 Windows2000 或 WindowsXP 操作系统及常用软件(如: WinRAR 等)。
2. TMS320C55xx 评估板及相关电源。如: ICETEK– VC5502-A 评估板。
3.通用 DSP 仿真器一台及相关连线。如: ICETEK-5100USB 仿真器。
4.控制对象(选用)。如: ICETEK-CTR 控制板。
5. TI 的 DSP 开发集成环境 Code Composer Studio。如: CCS3.1。
6.仿真器驱动程序。7.实验程序及文档。
ICETEK-DSP 教学实验箱的硬件连接 .连接电源:打开实验箱,取出三相电源连接线(如右图),将电源线的
一端插入实验箱外部左侧箱壁上的电源插孔中。确认实验箱面板上电源总
开关(位于实验箱底板左上角)处于“关”的位置,连接电源线的另一端至
220V 交流供电插座上,保证稳固连接。
2.使用电源连接线(如右图,插头是带孔的)连接各模块电源:确认实验
箱总电源断开。连接 ICETEK-CTR 板上边插座到实验箱底板上+12V 电源
插座; ICETEK-CTR 板下边插座到实验箱底板上+5V 电源插座;如使用
PP(并口)型仿真器,则连接仿真器上插座到实验箱底板上+5V 电源插座;
连接 DSP 评估板模块电源插座到实验箱底板上+5V 电源插座。注意各插
头要插到底,防止虚接或接触不良。
3.连接 DSP 评估板信号线:当需要连接信号源输出到 A/D 输入插座时,使用信号连接线(如右图)分别连接相应插座。
4. 接通电源: 检查实验箱上 220V 电源插座(箱体左侧)中保险管是否完好,在连接电源线以后,检查各模块供电连线是否正确连接,打开实验箱上的电源总开关(位于实验箱底板左上角),使 开关位于“开”的位置,电源开关右侧的指示灯亮。构造 DSP 开发软件环境
1.安装 CCS 软件(此文档假定用户将 CCS 安装在默认目录 C:CCStudio_v3.1 中,同时也建议
用户按照默认安装目录安装)⑵将实验箱附带的教学光盘插入计算机光盘驱动器。⑶打开教学光盘的“ CCS3.1”目录。⑷双击其中的“ Setup.exe”,进入安装程序。⑸选择“ Code Composer Studio”
按照安装提示进行安装,并重新启动计算机。⑹安装完毕,桌面上出现两个新的图标 2.安装 DSP 通用仿真器驱动
需要安装两部分:(1)仿真器的 Windows 驱动程序(并口无需,usb 口要安装);(2)根据仿真的 DSP 芯片不同,设置仿真器在 CCS 环境中的对应驱动程序。
⑴双击光盘中的“开发系统驱动USB”目录下的 usbdrv54x.exe 文件,然后再打开的页
面中输入 ccs 的安装路径,例如 C:CCStudio_v3.1 ⑵此时驱动已经被拷贝到 C:CCStudio_v3.1icetek 目录下。⑶然后把 usb 电缆连接到计算机的 usb 接口和 usb 仿真器上,计算机将提示找到新硬件,选择否,然后点下一步。3.安装实验程序
双击光盘中的实验安装文件,自动解压缩后安装到 C:ICETEK 目录下。
例如:实验安装文件为“ Setup5502A.exe” 4.安装初始化仿真器程序
将光盘中“工具”子目录下的“ xdsresetUSB”目录拷贝到硬盘上的任意路径下,建
议和实验程序目录放在一起,便一管理。然后用单击鼠标右键选择“ xdsresetUSB”目
录下 “ xdsrstusb”批处理文件,选择“发送到”->“桌面快捷方式”。注: 如果您的 CCS 系统未安装在默认的 C:CCStudio_v3.1 目录,请用鼠标右键单击桌面上“ xdsrstusb”图标,选择“属性”,将“快捷方式”项和“起始位置”中的路径改成您所安装的路径。
启动 CCS 启动 Emulator 方式:
⑴ 首先将实验箱电源关闭。连接实验箱的外接电源线。⑵ 检查 ICETEK-5100USB 仿真器的黑色 JTAG 插头是否正确连接到 ICETEK– VC5502-A板的 J1 插头上。注:仿真器的插头中有一个孔加入了封针,与 J1 插头上的缺针位置应重合,保证不会插错。
⑶ 检查是否已经用电源连接线连接了 ICETEK– VC5509-A 板上的POW1插座和实验箱底板上+5V 电源插座。⑷ 检查其他连线是否符合实验要求。检查实验箱上三个拨动开关位置是否符合实验要求。
⑸ 打开实验箱上电源开关(位于实验箱底板左上角),注意开关边上红色指示灯点亮。
ICETEK– VC5502-A 板上指示灯 D5 和 D6 点亮。如果打开了 ICETEK-CTR 的电源开关,ICETEK-CTR 板上指示灯 L1、L2 和 L3 点亮。如果打开了信号源电源开关,相应开关边的指示灯点亮。
⑹ 用实验箱附带的 USB 信号线连接 ICETEK-5100USB 仿真器和 PC 机后面的 USB 插座,注意 ICETEK-5100USB 仿真器上指示灯 Power 和 Run 灯点亮。
⑺ 双击桌面上仿真器初始化图标:
(8)如果进入 CCS 提示错误,先选“ Abort”,然后用“初始化 ICETEK-5100 USB2.0 仿真器”初始化仿真器,如提示出错,可多做几次。如仍然出错,拔掉仿真器上 USB 接头(白色方形),按一下 ICETEK– VC5509-A 板上 S1 复位按钮,连接 USB 接头,再做“初始化 ICETEK-5100 USB2.0仿真器”。
(9)如果遇到反复不能连接或复位仿真器、进入 CCS 报错,请打开 Windows 的“任务管理器”,在“进程”卡片上的“映像名称”栏中查找是否有“cc_app.exe”,将它结束再试。
退出 CCS 指示灯实验
了解 ICETEK-VC5502-AE 板在 TMS320VC5502DSP 外部扩展存储空间上的扩展。了解 ICETEK-VC5502-AE 板上指示灯扩展原理。学习在 C 语言中使用扩展的控制寄存器的方法。
TMS320VC5502DSP 的 EMIF 接口:
存储器扩展接口(EMIF)是 DSP 扩展片外资源的主要接口,它提供了一组控制信号和地
址、数据线,可以扩展各类存储器和寄存器映射的外设。-ICETEK-VC5502-AE 评估板在 EMIF 接口上除了扩展了片外 SDRAM 外,还扩展了指
示灯、DIP 开关和 D/A 设备。具体扩展地址如下: 0x400009,0x40000b: D/A 转换控制寄存器 0x400007: 板上 DIP 开关控制寄存器 0x400005: 板上指示灯控制寄存器
-与 ICETEK-VC5502-AE 评估板连接的 ICETEK-CTR 显示控制模块也使用扩展空间控制
主要设备:
608001h: 读-键盘扫描值,写-液晶控制寄存器 608002h: 液晶辅助控制寄存器
608003h、608004h: 液晶显示数据寄存器 608005h: 发光二极管显示阵列控制寄存器 拨码开关控制实验
了解 ICETEK-VC5502-AE 板在 TMS320VC5502DSP 外部扩展存储空间上的扩展。了解 ICETEK-VC5502-AE 板上拨码开关扩展原理。熟悉在 C 语言中使用扩展的控制寄存器的方法。
TMS320VC5502DSP 的 EMIF 接口:
存储器扩展接口(EMIF)是 DSP 扩展片外资源的主要接口,它提供了一组控制信号和地址、数据线,可以扩展各类存储器和寄存器映射的外设。
-ICETEK-VC5502-AE 评估板在 EMIF 接口上除了扩展了片外 SDRAM 外,还扩展了指
示灯、DIP 开关和 D/A 设备。具体扩展地址如下: 0x400009,0x40000b: D/A 转换控制寄存器 0x400007: 板上 DIP 开关控制寄存器 0x400005: 板上指示灯控制寄存器
-与 ICETEK-VC5502-AE 评估板连接的 ICETEK-CTR 显示控制模块也使用扩展空间控制
主要设备:
608001h: 读-键盘扫描值,写-液晶控制寄存器 608002h: 液晶辅助控制寄存器
608003h、608004h: 液晶显示数据寄存器 608005h: 发光二极管显示阵列控制寄存器 DSP 的定时器
通过实验熟悉 VC5502A 的定时器;掌握 VC5502A 定时器的控制方法;掌握 VC5502A 的中断结构和对中断的处理流程;学会 C 语言中断程序设计,以及运用中断程序控制程序流程。通用定时器介绍及其:
TMS320VC5502A 内部有两个 64 位通用定时器(GP), 控制方法详见spru618.pdf。中断响应过程(详见 spru371.pdf):
外设事件要引起 CPU 中断,必须保证: IER 中相应使能位被使能,IFR 相应中断也被使能。在软件中,当设置好相应中断标志后,开中断,进入等待中断发生的状态;外设(如定时器)中断发生时,首先跳转到相应中断级高的服务程序中(如:定时器 1 会引起 TINT中断),程序在进行服务操作之后,应将本外设的中断标志位清除以便能继续中断,然后返回。中断程序设计:
-程序中应包含中断向量表,VC5502A 默认向量表从程序区 0xffff00 地址开始存放,根据IPVD 和 IPVH 的值确定向量表的实际地址。
-注意观察程序中 INTR_init()函数的定义部分,其中 IPVD 和 IPVH 的值都为 0x0001;同时
观察配置文件 ICETEK-VC5502-AE.cmd 中的 VECT 段描述中 o=0x0100。
-向量表中每项为 8 个字,存放一个跳转指令,跳转指令中的地址为相应服务程序入口地址。
第一个向量表的首项为复位向量,即 CPU 复位操作完成后自动进入执行的程序入口。
-服务程序在服务操作完成后,清除相应中断标志,返回,完成一次中断服务。单路,多路数模转换(DA)
了解数模转换的基本操作。了解 ICETEK-VC5502-AE 板扩展数模转换方式。掌握数模转换程序设计方法。
1.数模转换操作:数模转换芯片使用 TLC7528C。TLC7528C 是双路、8 位数字-模拟转换器,内部具有各自单独的数据锁存器,其特性包括两 DAC 非常精密的一致性,数据通过公共 8 位输入口转送至两DAC 数据锁存器的任意一个。控制输入端 DACA/DACB 决定哪一个 DAC 被装载。器件的装载周期与随机存取存储器的写周期类似,能方便地与大多数通用微处理器总线或端口相接口。器件的工作电压 5V 至 15V,功耗小于 15mW(典型值)。2 或 4 象限的乘法功能使该器件成为许多微处理器的增益设置和信号控制的良好选择。它可工作于电压模式,与电流输出相比较,更适合于电压输出。TLC7528C 的工作温度范围从 0℃至 70℃。
2. TLC7528C 与 TMS320VC5502A 的连接:由于 TMS320VC5502A DSP 没有数模转换输出设备,采用外扩数模转换芯片的方法。在 ICETEK-VC5502-AE 板上选用的是 TLC7528C。TLC7528C 的转换寄存器被映射到了 DSP的 CE2 空间,两路 DA 转换通道的地址分别是: 0x400009,0x40000b。在 TLC7528C 的输出端,为了增加输出功率,经过一级运放再输出到板上插座上。
实验学习让我们更好的学习到了理论知识,不只是停留在理论上,实践才是真理。