第一篇:数学:17.1 探索反比例函数的性质 教案2(人教版八下)
反比例函数的图象和性质
当阳市干溪中学 汪军
一、背景分析
1. 对教材的分析
本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析
九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。
教学过程
一、忆一忆
师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?
生:作一次函数的图象要采用以下几个步骤:(1)列表(2)描点(3)连线。
生乙:一次函数的图象是一条直线。师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x 是什么函数? 生:反比例函数。
师:你们能作出它的图象吗? 生:可以。
点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。
二、作图象,试比较
(打开Z+Z智能教育平台)
师:请填写电脑上的表格,并开始在坐标纸上描点,连线。
师:再按照上述方法作y=-4/x的图象。(学生动手操作)
师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。(学生讨论交流,教师参与)
师:讨论结束,下面哪个小组的同学说说你们的看法? 生1:它们的图象都是由两支曲线组成的。
生2:y=4/x 的图象的两条曲线分布在一、三象限内,而y=-4/x 的图象的两支曲线分布在二、四象限内。
点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。
三、细观察,找规律
师:大家都说得很好,下面我们一起观察反比例函数 y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。
(展示Z+Z智能教育平台,让学生观察y=k/x 的图象,按下动画按钮,在运动中观察 值的变化与函数的图象变化之间的关系,并与同学们充分讨论)师:请同学们谈一谈刚才讨论的结果。
生:我发现函数图象的变化与k 的值有关:当 k>0 时,在每一象限内,y随 x的增大而减小,当 k<0 时,在每一象限内,y随x 的增大而增大。
师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。(利用Z+Z智能教育平台展示)
(1)反比例函数y=k/x的图象是由两支曲线所组成的。
(2)当 k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。
(3)当k>0 时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x 的增大而增大。
师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?
(由学生在Z+Z智能教育平台上进行操作)
生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。
师:大家做得很好。那么,如果我们在图象上任取A、B两点,经过这两点分别作 轴、轴的垂线,与坐标轴围成的矩形面积分别 为S1、S2,观察两个矩形面积的变化情况,并找出其中的变化规律。
题目:(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
生:我们发现,在同一个反比例函数中,不管k 值怎么变化,矩形的面积始终不变。
师:大家的观察很仔细,总结得也很正确。
点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。
四、用规律,练一练
1、课本137页随堂练习1 生:第一幅图是 y=-2/x的图象,因为在这里的 k<0,双曲线应在第二、四象限。
2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随 的增大而增大的有哪几个?
(1)y=1/(2x)(2)y=0.3/x(3)y=10/x(4)y=-7/(100x)生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y 随x 的增大而增大。
五、想一想,谈收获
师:通过今天的学习,你有什么收获?
生甲:我今天知道了怎样画反比例函数的图象。
生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。
生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x 的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大
生丁:我还能用反比例函数的相关性质解题。
师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。
总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了Z+Z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。
教学反思:
本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是Z+Z智能教育平台的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。
第二篇:探索反比例函数的性质
“探索反比例函数的性质”说课材料
八年级数学备课组
吉文虎
本节课是在学生学习了反比例函数的基本性质的基础上进行的一节选学内容。在进行探索反比例函数的性质的教学设计中,我应用了《几何画板》软件,设计了教学课件,对这节课的教学起到了良好的辅助作用。
这节课主要研究的是反比例函数图象的对称性,和比例系数对函数图象的影响,以及比例系数的几何意义三部分内容。这里主要介绍一下我的课件设计。第一部分,研究反比例函数图象的对称性。
先用《几何画板》画出反比例函数y=k/x的图象,再画出正比例函数y=x和
y=-x的图象。然后在函数y=k/x的图象上任取一点C,再作点C关于直线y=x和y=-x对称点,并显示出这三个点的坐标。学生完成以下任务:
(1)看三个点的位置关系及坐标特点,进行归纳和总结;
(2)拖动点C在函数图象上运动,看另两个对称点的运动变化情况,总结它们的坐标的关系;
(3)总结反比例函数的轴对称性。
第二部分,研究反比例函数图象位置与比例系数的关系。
先用《几何画板》画出反比例函数y=1/x、y=2/x、y=3/x、y=4/x、y=5/x、y=6/x和y=k/x的图象,拖动k点,改变k的值,让学生试述其规律;
再用《几何画板》画出反比例函数y=-1/x、y=-2/x、y=-3/x、y=-4/x、y=-5/x、y=-6/x和y=k/x的图象,拖动k点,改变k的值,让学生试述其规律; 最后总结反比例函数的比例系数对反比例函数图象的位置有什么影响。第三部分,研究k的几何意义。
先用《几何画板》画出反比例函数y=k/x的图象,并在图像上任取一点p,过p点作x轴,y轴的垂线,和坐标轴构成矩形,度量矩形的面积,改变k值,观察面积变化,得出结论。
学生们通过看老师用电脑画图和自己动手实验,规律总结得又快又准确,而且他们基本都能理解这些性质并很快掌握了它们。
课后反思
本节课突出学生在活动过程中的参与意识、探究方式、表达能力及合作交流的意识,突出了学生的主体地位使学生在轻松愉快的氛围中获得数学的“思想、方法、能力、素质”,同时获得对数学的情感。我在整节课的活动中,扮演的是学生学习的参与者、合作者、指导者的角色。不足之处是:
1.在组织探究活动中有些乱,因而给学生的时间不是太多,抑制了学生思维的拓宽,提升。
2.在引导学生主动提出问题时时机把握的不是太好。
3.学生的质疑,提出问题的质量需在平时的课堂教学中加强培养。我的收获:
1.探究性的课堂学生很喜欢,要坚持,要不断地探索,改进,以求课堂效果更好。
2.老师放手了,课堂活了,课堂效率提高了。3.学生学得轻松,老师教得高兴。
第三篇:利用几何画板探索反比例函数的性质
利用几何画板探索反比例函数的性质教学设计
福州聋哑学校
魏苏珊
杨帆
【课题】利用几何画板探索反比例函数的性质
【教学内容】形如y=k/x(k≠0)的函数叫做反比例函数,利用描点法可以画出反比例函数的图象,描出的点越多,画出的图象就越准准确。利用数学软件可以快速准确的画出反比例函数图像,而且能够帮助我们研究反比例函数的性质。本节课拟用几何画板作为工具探索反比例函数图象的对称性、以及k对函数图象形状的影响等方面的性质。【教学目标】
1、探索利用动点研究反比例函数性质的方法,并获得反比例函数对称的性质;
2、培养学生动手动脑的实践能力,观察、分析、抽象、概括等数学思维能力;
3、培养学生利用计算机技术理解数学和解决数学问题的能力,使学生在体验中获得成功的乐趣。
【教学过程】
一、复习
复习反比例函数的图象以及不同k值反比例函数图象的性质。
二、探索反比例函数y
打开“探索一”
画出反比例函数y
在反比例函数y1x1x1x的图象关于直线y=x轴对称。的图象。的图象上选定A(1,1),B(-1,-1).过A、B两点作一条直线,即正比例函数y=x的图象.并画出直线y=x。
把直线y=x选定为对称轴。在反比例函数yy=x的对称点C'.做出点C'后,显示点C和C'的坐标,运动点C,观察这两点坐标的变化。(也可以直接拖动点C)
1x上任意选取一点C,再作点C关于直线 可以得到结论1:反比例函数y1x的图象关于直线y=x轴对称。
(操作结束后,返回页面,继续“探索二”)
三、探索反比例函数y
以及反比例函数y1xkx关于直线y=-x对称 的图象关于直线y=±x对称。
1、打开“探索二”
做出对称直线y=-x,并在图象上任意选定C点。并做出点C的对称点C'点。运动点C,观察点C和C'的坐标变化。(也可以直接拖动点C)得到结论2:反比例函数y1x图象关于直线y=-x轴对称。
2、操作结束后,选择“下一页”。
探索“反比例函数y
①探讨反比例函数ykxkx的图象是否关于直线y=±x对称。” 的图象关于直线y=x对称。
”。
单击“探讨不同的k值,反比例函数的性质”,出现“
可在方框中输入任意的k值,探讨反比例函数关于直线y=x的对称性。
在反比例函数上任意选定点C,并做出点C关于直线y=x对称的对称点C',运动点C,并观察两点坐标的变化情况,可得出结论:反比例函数y
②探讨反比例函数ykxkx的图象关于直线y=x对称。的图象关于直线y=-x对称。
隐藏直线y=x,显示直线y=-x。
在方框中输入任意的k值,探讨反比例函数关于直线y=-x的对称性。
在反比例函数上任意选定点C,并做出点C关于直线y=-x对称的对称点C',运动点C,并观察两点坐标的变化情况,可得出结论:反比例函数ykx的图象关于直线y=-x对称。
kx综合以上两个结论,即“反比例函数y的图象关于直线y=±x对称。”
kx
四、探索“随着|k|的增大,反比例函数y越近还是越来越远?”
选择“探索三”
讨论:随着|k|的增大,反比例函数ykx图象的位置是否相对于坐标原点的距离是越来
图象的位置相对于坐标原点的距离是越来越近还是越来越远?
以下是对不同的k值进行探讨,将k值分为大于0和小于0这两类:
①当k>0时,可输入不同的k1和k2值,显示直线y=x,并显示直线y=x与反比例函数图象的交点到原点的距离,比较这四段距离的大小,可得到结论:当|k|增大时,反比例函数ykx图象的位置相对于坐标原点的距离是越来越远。(操作结束后,隐藏直线y=x,并选择“返回”)②当k<0时,可输入不同的k3和k4值,显示直线y=-x,并显示直线y=-x与反比例函数图象的交点到原点的距离,比较这四段距离的大小,可得到结论:当|k|增大时,反比例函数ykx图象的位置相对于坐标原点的距离是越来越远。(操作结束后,隐藏直线y=-x,并选择“返回”)
综合上述两个结论,可知:随着|k|的增大,反比例函数y原点的距离是越来越远。
五、小结 反比例函数ykxkx图象的位置相对于坐标 的图象关于直线y=±x对称。
kx随着|x|的增大,反比例函数y
图象的位置想对于坐标原点的距离越来越远。
第四篇:反比例函数的图像与性质教案
《反比例函数的图象与性质》
授课教师:还地桥镇松山中学卢青
【教学目的】
1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。
2、能力目标:提高学生的观察、分析能力和对图形的感知水平。
3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。
【教学重点】
探索反比例函数图象的主要性质及其图像形状。
【教学难点】
1、准确画出反比例函数的图象。
2、准确掌握并能运用反比例函数图象的性质。
【教学过程】
活动
1、汇海拾贝
让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。
活动
2、学海历练
让学生仿照画一次函数的方法画反比例函数y=2/x和y=-2/x的图像并观察图像的特点 活动
3、成果展示
将各组的成果展示在大家的面前,并纠正可能出现的问题。
活动
4、行家看台
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内
当k<0时,两支双曲线分别位于第二,四象限内
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动
5、星级挑战
1星:
1、反比例函数y=-5/x的图象大致是()
2、函数y=6/x的图像在第象限,函数y=-4/x的图像在第象限。2星:
1、函数y=(m-2)/x的图像在二、四象限,则m的取值范围是
2、函数y=(4-k)/x的图像在一、三象限,则k的取值范围是3星:
1、下列反比例函数图像的一个分支,在第三象限的是()
A、y=(3-π)/xB、y=2-1/xC、y=-3/xD、y=k/x2、已知反比例函数y=-k/x的图像在第二、四象限,那么一次函数y=kx+3的图像
经过()
A、第一、二、三象限B、第一、二、四象限
C、第一、三、四象限D、第二、三、四象限
4星:
1、在同一坐标系中,函数y=-k/x和y=kx-k的图像大致是
2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致
是
5星:
1、反比例函数y2m
1xm28,它的图像在一、三象限,则
2、反比例函数y
活动
6、回味无穷 k4k2,它的图像在一、三象限,则k的取值范围是x
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内
当k<0时,两支双曲线分别位于第二,四象限内
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动
7、终极挑战
如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=(k2-5k-10)/x的图像上,若点A的坐标是(-2,-2)则k的值为
第五篇:《实际问题与反比例函数》参考教案1
17.2实际问题与反比例函数(1)
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题 2.难点:分析实际问题中的数量关系,正确写出函数解析式 3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
五、例习题分析
例1.见教材第57页
/ 3
分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 =底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反
例2.见教材第58页
分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?
例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得P96,(3)问中当P大于144千帕时,V气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于
六、随堂练习
1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为
2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函
/ 3
2立方米 3数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度 答案:=
七、课后练习
1.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)
(1)则速度v与时间t之间有怎样的函数关系?
(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?
(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?
答案:v3600,v=240,t=12 t14.3,当V=2时,=7.15 V2.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天
(1)则y与x之间有怎样的函数关系?(2)画函数图象
(3)若每天节约0.1吨,则这批煤能维持多少天?
/ 3