第一篇:1.2.2 相反数教学设计 沪科版
1.2.2相反数
白湖初中----李海霞
一、【教材分析】
1、本节在教材中的地位和作用
相反数是初中数学中不可或缺的一个内容,在初中数学中占有一定的地位。通过相反数的学习,可以对已学过的有理数、数轴等知识加以巩固,同时又是今后学习绝对值等知识的基础.
2、目标分析
根据新课标的要求以及七年级学生的认知水平我特制定本节课的教学目标如下:
知识目标:掌握相反数的概念,会求有理数的相反数;进一步理解数轴上的点与数的对应关系.
能力目标:通过归纳相反数在数轴上所表示的点的特征,培养归纳能力,体验数形结合的思想.
情感目标:通过师生、生生合作学习,促进交流,激发学生对数学的学习兴趣.
二、【教法分析】
根据建构主义的学习理论,认为学习是学习者主动建构新知识的过程.在教学中,老师不仅要传授知识给学生,还要成为他们学习活动的促进者、指导者.初一学生已经接触过关于数轴的知识,因此,本节课主要采用指导探究法进行教学,通过两个师生双边活动,即①动——师生互动,共同探索;②导——合理引导,激发学生的求知欲,引导他们解决问题并掌握解决问题的规律和方法,发展并增强学生的探索能力和创造能力.
三、【学法分析】
根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现知识,提高能力,我主要引导学生亲自经历知识的产生和归纳总结过程,突出学生的主体地位,如让学生“四动”参与教学活动(动手画数轴;动眼观察数的特点;动脑总结归纳相反数的概念;动嘴说相反数在数轴上的特点).让学生亲自经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标.
四、【教学目标】
(一).知识与技能
(1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系.
(2)给出一个数,能求出它的相反数.
(二)、过程与方法
借助数轴,通过观察特例,总结出相反数的概念.从数和形两个侧面理解相反数.培养学生分类讨论和数形结合的思想,提高观察、归纳与概括的能力。
(三)、情感态度与价值观
鼓励学生积极进行归纳、比较交流等活动,培养学生严谨的治学态度并初步感受数学文化的教育价值,认识对立统一的规律。
五、【教学重点】
理解相反数的意义,会求一个数的相反数.
六、【教学难点】
理解和掌握双重符合的简化.
七、【教学方法】
活动式、体验式、讲授式。
八、【教学准备】
多媒体课件
九、【教学课时】
1课时。
十、【教学过程】
(一)、创设情境,导入新课
1、师生互动:师要求二个学生在讲为课桌前背靠背站好(分左右),听教师口令:“向前2步走”。
师:规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么?
生:向右走2步记作2步;向左走2步记作-2步。
师:规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来。
生:画数轴,在数轴上标出表示2和-2的点。
师:多媒体展示下图并问:从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有哪些意义?
生1: 2和-2这两个数具有相反意义。
师:回答很好。还这其他说法吗?
生2:2和-2的数字相同(都是2),但性质符号不同。
生3:2和-2这两个数表示距原点都是两个单位(距离相等)。
师:在代数中,把具有上述特点的两个数称为互为相反数,今天我们就来学习相反数的概念。
师板书课题:相反数
2、在数轴上,画出表示1,-1,5,-5,3,-3,2,-2各数的点.对折观察其特点
(二)、新授
请同学们观察后讨论回答:
1.上述中5和-5;3和-3,1和-1每对数有什么特点? 2.每对数在数轴上所表示的点有什么特点?
3.再观察课本的图1.2-1中点D和点B,它们的位置关系如何?•它们各表示的数有什么特点?
概括:
(1)每一对数,只有符号不同.
(2)在数轴上表示每一对数的两个点分别在原点的两边,•并且离开原点的距离相等.
(3)点D和点B分别位于原点的两边,且与原点的距离相等,它们分别表示-3•和3.
思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?•与原点的距离是5的点呢?
归纳:
一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图:
-a-202a
像这样只有符号不同的两个数叫做互为相反数,例如6和-6,2反数,也就是说6的相反数是-6,-
211和-2,都是互为相2211的相反数是2. 22数,•零的相反数是零,而零没有倒数.
例1:分别写出下列各数的相反数. 5,-7,-31,+11.2,0. 2 解:5的相反数是-5;-7的相反数是7;-3的相反数是3;+11.2的相反数是-11.2;0的相反数是0.
强调书写格式,防止出现如“5=-5”的错误.
容易看出,在正数前面添上“-”号,就得到这个正数的相反数.在任意一个数的前面添上“-”号,新的数就表示原数的相反数.
例如:-(+5)=-5,-(-7)=7,-(-
311)=3,-(+11.2)=-11.2,-0=0. 22 我们知道一个正数,前面的“+”号可以写也可以不写,所以在一个数的前面添上“+”号,表示这个数没有变化,还是它本身.
例如:+(-4)=-4,+(+12)=12,+0=0
(三)、课堂练习
1.写出下列各数的相反数. +241,-2.5,0,33 2.化简下列各数.
-(-30),-(+3),-(-38.2),+(-5),+(+
2). 7 3.指出下列各对数,哪些是相等的数?哪些是互为相反数? +(-3)与-3,-(+3)与3,-(-7
11)与-7. 22 4.如果a=-a,那么表示a的点在数轴上的什么位置?
5.你会化简下列各数吗?试试看.(本题可根据学生实际情况选用)-[+(-2)],-[-(-6)].
提示:
因为任意数a是-a的相反数,所以表示a的点在数轴上与表示-a•的点关系原点对称,这两个点分别在原点左、右两边且与原点距离相等.
(四)、课堂小结
本节课你有什么收获?说说
(五)、作业布置
1.课本第11页练习1、2、3题,第15页习题1.2第3题.
(六)、板书设计:
1、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图:
-a-202a
像这样只有符号不同的两个数叫做互为相反数。
2、随堂练习。
3、小结。
4、课后作业。
(七)、课后反思
本节课我是根据“新课标”的教学思想设计并实施的。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。
相反数这节课是在数轴一节课后学习的,而数轴又
是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行讲解。我让学生在一张白纸上画数轴,并将数轴沿原点对折,感受互为相反数的两数的对称性。通过对折还比较容易地解决了0的相反数是0这一难点。(因为对折后原点与本身重合。)
本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对0是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后
在我的引导下得出0的相反数是0的结论。
本节课的教学我也觉得有不足的地方。我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。这是我以后在教学中要加强的。
第二篇:相反数教学设计
1.2.3 相反数
教学目标
1.知识与技能
①借助数轴了解相反数的概念,知道互为相反数的位置关系.
②给一个数,能求出它的相反数. 2.过程与方法
①训练学生利用数轴应用数形结合的方法解决问题.
②培养学生自己归纳总结规律的能力. 3.情感、态度与价值观
①通过相反数的学习,渗透数形结合的思想.
②感受事物之间对立、统一联系的辩证思想.
教学重点难点
重点:理解相反数的意义.
难点:理解和掌握双重符号简化的规律.
教与学互动设计
(一)创设情境,导入新课
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
(二)合作交流,解读探究
1.观察下列数:6和-6,22255和-2,7和-7,和-,并把它们在数轴上标出. 3377 想一想(1)上述各对数之间有什么特点?
(2)表示这两对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的数吗?
观察 像这样只有符号不同的两个数叫相反数.
两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,?并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.
【总结】 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=?-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0?的相反数是0.
(三)应用迁移,巩固提高
例1 填空
(1)-5.8是 5.8 的相反数,3 的相反数是-(+3),a的相反数是 –a,a-b的相反数是-(a-b),0的相反数是 0 .
(2)正数的相反数是 负数,负数的相反数是 正数,0 的相反数是它本身. 例2 下列判断不正确的有(c)
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点. a.1个 b.2个 c.3个 d.4个
例3 化简下列各符号:
(1)-[-(-2)](2)+{-[-(+5)]}(3)-{-{-?-(-6)}?}(共n个负号)
【答案】(1)-2(2)5(3)当n为偶数时,为6;当n为奇数时,为-6. 【提示】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负. 例4 数轴上a点表示+4,b、c两点所表示的数是互为相反数,且c到a?的距离为2,点b和点c各对应什么数?
【答案】 c点表示2或6,则相应的b点应表示-2或-6.
【提示】 画出数轴,结合数轴的特点来分析.
【点评】 经历观察数学活动,发展自己的指导能力.
备选例题
(2004·江西)如图所示,数轴上的点a所表示的是实数a,则点a到原点的距离是___________.
【点拨】 由数轴上的位置,不难知道a是一个负数,这是解决本题的前提.
【答案】-a
(四)总结反思,拓展升华
归纳 ①相反数的概念及表示方法.
②相反数的代数意义和几何意义.
③符号的化简. 1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?
(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.
【答案】(1)不正确,如0的相反数还是0,负数的相反数是正数.
(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4. 2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?
【提示】 结合数轴进行观察比较.
解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.
∴-a在1和-3之间
故-3≤a≤1 ∴a的相反数是不小于-3又不大于1的数.
【点评】 在解决问题中,能进行简单的、有条理的思考.
(五)课堂跟踪反馈
夯实基础 1.判断题
(1)-3是相反数(×)
(2)-7和7是相反数(∨)
(3)-a的相反数是a,它们互为相反数(∨)
(4)符号不同的两个数互为相反数(×)2.分别写出下列各数的相反数,并把它们在数轴上表示出来. 1,-2,0,4.5,-2.5,3 【答案】 相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略. 3.若一个数的相反数不是正数,则这个数一定是(b)a.正数 b.正数或0 c.负数 d.负数或0 4.一个数比它的相反数小,这个数是(b)a.正数 b.负数 c.非负数 d.非正数 5.数轴上表示互为相反数的两个点之间的距离为427,则这两个数是±. 33 6.比-6的相反数大7的数是 13 .
提升能力
7.若a与a-2互为相反数,则a的相反数是 –1 . 8.(1)-(-8)的相反数是 –8,(2)+(-6)是 6 的相反数.(3)1-a 的相反数是a-1.
(4)若-x=9,则x=-9 . 9.已知有理数m、-
3、n在数轴上位置如图所示,将m、-
3、n?的相反数在数轴上表示,并将这6个数用“<”连接起来.
【答案】-3<-n 【答案】 当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0. 12.新中考题 3的相反数是(a)4 3344 a. b.- c. d.- 4433)-篇二:相反数教学设计 相反数 教学设计 教学目标: 知识与技能: 体会相反数的概念和几何意义; 会求已知数的相反数; 能根据相反数的意义进行多重符号的化简; 过程与方法: 经历观察、猜想、做出推断的过程,发展形象思维; 初步运用数形结合的思想方法解决问题,增强应用意识,发展创新敬精神。情感、态度与价值观: 在学习中体验成功的喜悦,增强学好数学的信心。教学重点 相反数的概念,求一个数的相反数。教学难点 根据相反数的意义化简符号。教学用具 投影仪、自制胶片。教学设计思路 教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的。由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程。由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程。 教学过程: 课时安排 1课时 (一)探索新知,导入新课 1.互为相反数的概念的引出。 演示活动:要一个学生向前走5步,向后走5步。 提出问题“如果向前为正向后为负,向前走5步,向后走5步各记作什么? 学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步。[板书] +5,-5 师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数。 [板书]相反数 【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数。 师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)。 师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答) [板书]只有符号不同的两个数,其中一个叫另一个的相反数。 【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点。更形象直观地引导学生自己得出相反数的概念。2.理解概念(出示投影1) 判断:(1)-5是5的相反数()(2)5是-5的相反数() (3)与互为相反数() (4)-5是相反数()学生活动:学生讨论。 【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力。 师:0的相反数是0。(出示投影2)1.在前面画的数轴上任意标出4个数,并标出它们的相反数。2.分别说出9,-7,0,-0.2的相反数。3.指出-2.4,-1.7,1各是什么数的相反数? 4.的相反数是什么? 学生活动:1题同桌互相订正,2、3题抢答。 【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数。2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是。” [板书]a的相反数是-a。 师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。 提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?。 。 提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少? 学生活动:讨论、分析、回答。 【教法说明】利用相反数的概念化简符号是这节课的难点。这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点。 巩固练习(出示投影3)1. 是______________的相反数。2.是_____________的相反数。3.4. 是_____________的相反数,是_____________的相反数。 学生活动:思考后口答。 学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢? [板书] 如: 学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略。并答出以上式子的结果。 【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结。 巩固练习: 1.例题2 简化-(+3)-(-4)的符号。2.简化下列各数的符号 (二)归纳小结 师:我们这节课学习了相反数,归纳如下: 1.________________的两个数,我们说其中一个是另一个的相反数。2. 表示求的_____________,表示______________。 学生活动:空中内容由学生填出。 【教法说明】通过问题形式归纳出本节的重点。 (三)回顾反馈 1.-1.6是__________的相反数,____________的相反数是0.3。2.下列几对数中互为相反数的一对为()。a. 和 b. 与 c. 与的相 3.5的相反数是________________;的相反数是___________;反数是________________。4.若,则 ;若 是___________数;若,则。 5.若是负数,则数。 是负数,则是___________ 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答。【教法说明】1,2题是对本节课的重点知识进行复习。3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高。 (四)随堂练习1.填表 2.选择题(1)下列说法中,正确的是()a.一个数的相反数一定是负数 b.两个符号不同的数一定是相反数 c.相反数等于本身的数只有零 d.的相反数是-2篇三:相反数 公开课教学设计 相反数 公开课教学设计 教学目标 一、知识与技能: 1、了解相反数的概念,理解数轴上的点与数的对应关系; 2、掌握求已知数的相反数的方法,会根据相反数的意义化简符号 二、过程与方法: 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力。 三、情感态度与价值观: 体验数形结合的思想及数学的简洁美。 学情分析 两班共有学生105人,大部分同学学习积极性较高,能较好地完成学习任务,但个别学生学习习惯不是很好,整体水平不够理想,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意,学习成绩极不理想。从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知。 多数部分学生能主动学习,深得老师赞赏。比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。但仍有个别学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。 重点难点 重点:会求一个数的相反数。 难点:根据相反数的意义化简符号。 学法引导 1.教学方法:利用引导发现法,充分发挥学生的主体地位. 2.学生学法:探究→理解→掌握→练习→反馈→总结. 6教学过程 6.1 第三课时 相反数 问题情境下的概括 问题一:要一个学生向前走4步,向后走4步.“如果向前为正,向前走4步,向后走4步各记作什么? 师生活动:一个学生口答,学生回答后提问: (1)这两个数怎么表示? (2)你认为他们的什么相同,什么不同? (3)你能再举出类似的例子吗? 设计意图: 由于有了正负数的学习,进行以上演示,学生们非常容易地得出+4,-4两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数. 问题二:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数 师生活动:一个学生板演,其他学生自练 学生画图后提问: (1)你能试述具备什么特点的两数是互为相反数? (2)互为相反数的两个数在数轴上的位置如何?(3)0的相反数是什么? 设计意图: 教师提供了一个学生体会概念的机会—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念. 问题情境下的辨析: 问题一:对下列题进行判断: (1)-5是5的相反数() (2)5是-5的相反数() (3)与 互为相反数() (4)-5是相反数() 师生活动:学生讨论.师暴晒错误 设计意图: 对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力. 问题二: 1、分别说出9,7,0.2的相反数. 2、指出-2.4,-1.7,-1的相反数? 3、a 的相反数是什么? 师生活动:同桌互相订正.师纠错 设计意图: 1、2、3题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“a的相反数是-a .” 师归纳: a 的相反数是-a,a可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号. 问题三: 前面加“-”号表示 的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少? 学生活动:讨论、分析、回答. 设计意图: 利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然 a的相反数是-a,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊。1.. 2.. 3.. 4.. 学生活动:思考后口答. 学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如: +(-3)+(+7) 学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果. 设计意图: 根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结. 练习中的巩固: 1.教材10页练习。2.化简下列各数。 -(-68)-(+0.75)-(-3/5)-(+3.8)3.自己编题 学生活动: 1、2题抢答,3题分组训练. 设计意图: 1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度. 归纳小结中的提升 师:我们这节课学习了相反数,归纳如下: 1. ________________的两个数,我们说其中一个是另一个的相反数. 2.-a表示求 a的_____________,+a表示a ______________. 学生活动:空中内容由学生填出. 设计意图: 通过问题形式归纳出本节的重点. 回顾反馈中的检测 1.-1.6是__________的相反数,____________的相反数是0.3. 2.下列几对数中互为相反数的一对为(). a. 和 b. 与 c. 与 3.若,则 ;若,则 . 4.若 是负数,则 是___________数;若 是负数,则 是___________数. 5.5的相反数是________________; 的相反数是___________; 的相反数是________________. 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答. 设计意图: 1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情,对学有余力的同学是一个提高.篇四:相反数教学设计 1.2.3相反数教学设计 一、教学目标 1、知识目标:使学生理解相反数的意义.2、能力目标:使学生掌握求一个已知数的相反数.3、情感目标:在传授知识、培养培养学生的观察、归纳与概括的能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想.二、教学的重点和难点 重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性。难点:多重符号的化简。 课题: 2.2.3 相反数教学设计 一、教学目标 1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3、体验数形结合的思想。 二、教学难点、知识重点 难点:归纳相反数在数轴上表示的点的特征、相反数的概念 重点:教学过程(师生活动)、设计理念 三、设置情境 引入课题 预备知识:数轴的三要素, 有理数在数轴上的表示方法.1.首先我们一起来回忆一下数轴的三要素是什么? 原点、正方向、单位长度.2.下面老师将给出两组数,请同学们在数轴上把它们表示出来.-4和4,-1和1 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第26页的思考 再换2个类似的数试一试。 归纳结论:教科书第26页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想,深化主题提炼定义给出相反数的定义 问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为-a 思考:数轴上表示相反数的两个点和原点有什么关系? 四、熟悉新知、发现问题 老师给出7张卡片让同学们做“找朋友”游戏,游戏规则是互为相反数的两个数是朋友,是朋友的两个数站在一起.在游戏过程中同学发现数0是没有朋友的。随后给出规定:零的相反数是零.深化相反数的概念;“零的相反数是零”是相反数定义的一部分。练一练:例1 写出下列各数的相反数.+5,-7,11.2,0.强化互为相反数的数在数轴上表示的点的几何意义给出规律,通常在一个数前面添上“-”号,表示原来那个数的相反数.在一个数前面添上“+”号,表示这个数本身.例2 化简下列各数.(1)-(+10);(2)+(-0.15);(3)+(+3);(4)-(-20). 知识回顾 练习:求下列数的相反数.(1)-(+20);(2)+(-2.5); (3)-(-13);(4)+(+7)教科书第27页第二个练习利用相反数的概念得出求一个数的相反数的方法 课堂小结 相反数的定义 2,互为相反数的数在数轴上表示的点的特征 3,怎样求一个数的相反数?怎样表示一个数的相反数? 本课作业 教材P28习题2.3 必做题: 1、2题; 选做题:3题 ;思考题:4题; 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想. 2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法. 3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地 《相反数》教学设计 一、教材分析 1.教学目标、重点、难点.教学目标: (1)掌握相反数的概念,理解相反数的特征.(2)通过归纳在数轴上表示相反数的两个点的特征,培养学生的归纳能力.(3)体验数形结合的思想.重点:理解相反数的概念.难点:理解相反数的概念.2.例、习题的意图 通过补充例1及练习1的学习加强相反数的概念的理解,掌握相反数计算方法和语言表述.进一步训练学生根据相反数的概念表示字母的相反数,逐步渗透字母表示数的意义.例2是在P13练习的基础上有所加强,通过例2及练习2的教学让学生学会利用相反数的概念进行符号的化简,深化对相反数表示形式及意义的理解.补充例3的教学是强化相反数的相互性的理解,同时让学生体会相反数的应用,初步建立方程意识.3.认知难点与突破方法: 深入理解相反数的概念,应用相反数的概念对含有多重符号的数进行化简是本节课的难点,在教学中利用观察对比的方法,让学生从外在的形入手,发现相反数的特征,使学生对相反数有较强的感性认识,然后再利用数轴挖掘其内在的特征,为绝对值的学习打好基础.在例题和练习的教学中始终抓住相反数的概念及外在的特征的理解和应用.通过例1相反数的计算过程,强化相反数表示的理解,为多重符号的数进行化简做好铺垫.在例2教学中,始终抓住对-a的认识,紧扣相反数的概念,使学生感受到概念的应用,掌握化简的根本.从而降低了学生的认知难度.二、新课引入 1.问题引入: 问题一:观察下列四个数,根据四个数的联系与区别,尝试将四个数进行分类,并说出你的分类标准.-2,5,-5,2 方法一:(-2,-5)、(2,5)根据符号特征进行分类 方法二:(-2,2)、(-5,5)根据数值的特征 教师引导学生第2种分类的两组数进行分析,归纳出起外在的特征:只有符号不同的两个数.进而引出相反数的概念.2.相反数的概念及形式.只有符号不同的两个数叫做互为相反数.一般的数a的相反数表示为-a.(初步渗透字母代替数的意识,让学生体会a表示一个有理数,可正、可负可为0,-a表示a的相反数,不一定是负数,要由a的正负性决定) 重点理解:“互为”和“只有符号不同”的含义.引导学生举出一些互为相反数的例子,了解学生理解情况.问:所有有理数都有相反数吗? 学生讨论:归纳结论,所有有理数都有相反数,正数的相反数是负数,负数的相反数是正数,0的相反数是0.3.互为相反数的两个数在数轴上的特征.教师引导学生把5,-5,和2,-2分别表示在数轴上,观察其相对位置特征.学生分组讨论.教师引导学生总结规律完成P12思考、P13思考.表示互为相反数的两个点分居在原点两侧,且到原点的距离相等.(关于原点对称)反之到原点的距离相等点有两个,这两个点表示的数互为相反数.三、例题讲解 补充例1写出下列各数的相反数 3(1),(2)-2,(3)0,(4)2.75-1.5,4(5)-(3.8-2.5),(6)-x,解略.-x是x的相反数,则x也就是-x的相反数,体验相对性.求一个数的相反数就是改变这个数的符号.求有些数的相反数要先化简,字母的相反数也就是改变其符号.33=-.同时也可渗透符号语44言的表示:“-2的相反数是2”可写成-(-2)=2.“2.75-1.5的相反数是在教学中要强化语言,防止出现:-2=2,-1.25” 可写成-(2.75-1.5)=-(1.25)=-1.25.“-x的相反数是x”可写成-(-x)=x.为例2做铺垫.例2 化简下列各数的符号:(在P13练习的基础上补充个别练习) 3-(-68)-(+0.75)-(-) 5-〔+(-2.5)〕-〔-(-2)〕 +〔+(-3)〕 1(5) 4由相反数的表示知,数a的相反数表示为-a.即-a是a的相反数.则-(+0.75)的意义是:0.75的相反数,即-0.75.-(-68)的意义是:-68的相反数,即68.-〔-(-2)〕的含义要分层理解.-(-2)是-2的相反数为+2,-〔-(-2)〕=-(+2)即+2的相反数,为-2.在学习正负数时,我们知道正数的正号可省略.-〔+(-2.5)〕=-(- 2.5)=2.5,+〔+(-3)〕=-3 一个数前加“-”号表示求这个数的相反数,一个数前的“+”号可以省略,多重符号从里向外依次化简.补充例3 填空: (1)若-x=-(-3.5),则x=.若a=-6.3,则-a=.(2)若-x与2互为相反数,则x=.若x+1与-3互为相反数,则x=.分析:在教学中可以渗透转化思想,字母代替数,字母可以表示一个数也可以是一个式子,x可以是正数,也可表示一个负数.例如:(1)-x表示x的相反数,-(-3.5)表示-3.5的相反数,因-x=-(-3.5)所以x=-3.5.(4)若x+1与-3互为相反数,而-3的相反数是3,则x+1=3,x=2,此题渗透方程思想.四、课堂练习 1.教科书P13练习1、2.2.补充练习.(1)化简下列各数的符号 (2)若-a=2,则-〔-(-a)〕=.-(-b)=-3,则+(-b)=.五、课后练习 1.教科书P17第3题.2.化简下列各数的符号 (1)-(+1/2)(2)+(-1/5)(3)-〔-(-23)〕 (4)-(+6)(5)-〔+(-7)〕(6)-{-〔-(+5)〕} 3.若数a与b互为相反数,在数轴上表示数a、b的两个点A、B之间的距离是2004个单位长度,求a、b两数. 2.2 整式加减 第1课时 同类项 教学目标 【知识与技能】 理解同类项的概念,在具体情景中,认识同类项.【过程与方法】 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.【情感、态度与价值观】 初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点 【重点】理解同类项的概念.【难点】根据同类项的概念在多项式中找同类项.教学过程 一、复习引入 师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人= ;(2)5只羊+8只羊= .2.师:观察下列各单项式,把你认为相同类型的式子归为一222222类:8xy,-mn,5a,-xy,7mn,9a,-,0,0.4mn,2xy.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课 1.同类项的定义: 222师:在生活中我们常常把具有相同特征的事物归为一类.8xy与-xy可以归为一类,2xy222与-可以归为一类,-mn、7mn与0.4mn可以归为一类,5a与9a可以归为一类,还有、0与也可以22归为一类.8xy与-xy只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都2是1;同样地,2xy与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解 教师读题,指名回答.【例1】 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()22(3)3xy与-yx是同类项.()22(4)5ab与-2abc是同类项.()(5)2与3是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)【例2】 游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.【例3】 指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;2222(2)3xy-2xy+xy-yx.【答案】(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.2222(2)3xy与-yx是同类项,-2xy与xy是同类项.k2【例4】 k取何值时,3xy与-xy是同类项? 【答案】 要使3xy与-xy是同类项,这两项中x的次数必须相等,即k=2.所以当k=2k2时,3xy与-xy是同类项.【例5】 若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);22(2)2(s-t)+3(s-t)-5(s-t)-8(s-t)+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习 23请写出2abc的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正) 23【答案】 改变2abc的系数即可,与其本身也是同类项.五、课堂小结 理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时 合并同类项 教学目标 【知识与技能】 理解合并同类项的概念,掌握合并同类项的法则.【过程与方法】 k 232经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.【情感、态度与价值观】 在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点 【重点】正确合并同类项.【难点】找出同类项并正确的合并.教学过程 一、情境引入 师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元? 学生完成,教师点评.二、讲授新课 合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解 2222【例1】 找出多项式3xy-4xy-3+5xy+2xy+5中的同类项,并合并同类项.22222222【答案】 原式=3xy+5xy-4xy+2xy+5-3=(3+5)xy+(-4+2)xy+(5-3)=8xy-2xy+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.【例2】 下列各题合并同类项的结果对不对?若不对,请改正.224(1)2x+3x=5x;(2)3x+2y=5xy;(3)7x-3x=4;(4)9ab-9ba=0.(通过这一组题的训练,进一步熟悉法则) 222【例3】 求多项式3x+4x-2x-x+x-3x-1的值,其中x=-3.22222【答案】 3x+4x-2x-x+x-3x-1=(3-2+1)x+(4-1-3)x-1=2x-1,当x=-3时,原式=2×(-3)-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.【答案】 略 四、课堂小结 22 2221.要牢记法则,熟练正确的合并同类项,以防止2x+3x=5x的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时 去括号、添括号 教学目标 【知识与技能】 去括号与添括号法则及其应用.【过程与方法】 在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.【情感、态度与价值观】 让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点 【重点】去括号和添括号法则.【难点】当括号前是“-”号时的去括号和添括号.教学过程 一、创设情境,引入新课 还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为 4+3(n-1).2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为 n+n+(n+1).3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为 4n-(n-1).4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为 1+3n.搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗? 生:相等.师:那么我们怎样说明它们相等呢? 学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一 去括号 师:在代数式里,如果遇到括号,那么该如何去括号呢? 我们再看看以前做过的习题.计算:(1)-(8-12)+(-16+20)=-8+12-16+20(2)(1-2)+(3-4)-(-5+6)=1-2+3-4+5-6 它们是相等的吗?若相等,观察两式的变化情况,并说明.学生回答.师:①前一个括号里的数有没有变号?后一个括号里的数有没有变号?②前两个括号里的224数有没有变号,后两个数呢?③变与不变由谁来决定,与什么有关? 学生回答.师:去括号法则:如果括号前是“+”号,那么去掉括号和括号前的“+”,括号内各项不改变符号;如果括号前是“-”号,那么去掉括号及括号前的“-”号,括号内各项都要改变符号.师:去括号的依据又是什么呢?请同学们看下面的解答过程,并回答.+(a+b-c) -(a+b-c)=1×(a+b-c)=(-1)×(a+b-c)=a+b-c =-a-b+c 生:乘法分配律.二、新课讲授 1.去括号:(1)a-(a+b+c);(2)x-2(y-x).教师找两名学生上黑板演示,其余同学在座位上解答.2.先去括号,再合并同类项:(1)8a+2b+(5a-b);(2)a+(5a-3b)-2(a-2b).教师找两名学生上黑板演示,其余同学在座位上解答.师评:无论括号前是“+”号、“-”号,还是一个数字,都是乘法分配律的运用,运算时既可以使用去括号法则,也可以直接使用乘法分配律,关键是注意“减全变”、“加不变”.活动二 添括号 问题展示:观察以下两等式中括号和各项符号的变化.(1)a+(b+c)=a+b+c;(括号没了,符号不变)(2)a-(b+c)=a-b-c.(括号没了,符号全变了)再观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?(1)a+b+c=a+(b+c);(2)a-b-c=a-(b+c).学生回答.添括号的法则:如果括号前是“+”号,那么括到括号里的各项都不改变符号,如果括号前是“-”号;那么括到括号里的各项都要改变符号.三、例题讲解 【例】 先去括号,再合并同类项:(1)8a+2b+(5a-b);(2)a+(5a-3b)-2(a-2b).【答案】(1)8a+2b+(5a-b)=8a+2b+5a-b =(8a+5a)+(2b-b)=13a+b.(2)a+(5a-3b)-2(a-2b)=a+5a-3b-2a+4b =(a+5a-2a)+(-3b+4b)=4a+b.四、变式训练 1.在下列各式的括号里填入适当的项.2(1)a-a+b=+()=-();(2)x-y=(x-xy)+(-y);2222(3)(x-x)-(y-y)=()-(x-y).2.在括号里填入适当的项.22(1)x-x+1=x-();(2)2x-3x-1=2x+();(3)(a-b)-(c-d)=a-().学生解答: 221.(1)a-a+b-a+a-b(2)xy(3)x-y 2.(1)x-1(2)-3x-1(3)b+c-d 师:第一题中的(2)、(3)可先把等号两边的括号都去掉,再观察等式左边与右边的各项,看是否缺项、多项、符号是否一致,然后进行填空,使等式左右两边相等;其余各题直接运用添括号法则.五、课堂小结 这节课我们学习了哪些新知识,需要注意些什么? 1.去括号法则和添括号法则.2.添括号是添上括号及括号前面的符号,去括号是去掉括号及括号前面的符号.3.添括号和去括号的过程正好相反,它们可以相互检验.第4课时 整式加减 教学目标 【知识与技能】 让学生从实际背景中去体会进行整式加减运算的必要性,并能灵活运用整式的加减运算的步骤进行运算.【过程与方法】 经历整式加减法则的概括过程,发展学生有条理的思考及语言表达能力,培养符号感.【情感、态度与价值观】 认识到数学是解决实际问题和进行交流的重要工具.教学重难点 【重点】整式的加减.【难点】总结出整式加减运算的一般步骤.教学过程 一、问题引入 1.做一做.师:在上新课之前,我们先来看一下这道题.某学生合唱团出场时第一排站了n名,从第二排起每一排都比以前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)学生写出答案:n+(n+1)+(n+2)+(n+3).(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算? 2.教师板书题目.化简: 2222 22(1)(x+y)-(2x-3y);2222(2)2(a-2b)-3(2a+b).师:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?(从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性,再通过复习、练习,为学生概括出整式的加减的一般步骤做必要的准备) 二、讲授新课 1.整式的加减:教师概括.(引导学生归纳总结出整式的加减运算的步骤)师:我们不难发现,去括号和合并同类项是整式加减的基础.因此,整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.三、例题讲解 22【例1】 求整式x-7x-2与-2x+4x-1的差.22222【答案】(x-7x-2)-(-2x+4x-1)=x-7x-2+2x-4x+1=3x-11x-1.(本例应先列式,列式时注意给两个多项式都加上括号,后进行整式的加减)练习一个多项式加上-5x-4x-3等于-x-3x,求这个多项式.【例2】 先化简,再求值: 22225a-[a-(2a-5a)-2(a-3a)],其中a=4.2222【答案】 原式=5a-(a-2a+5a-2a+6a)22=5a-(4a+4a)22=5a-4a-4a 2=a-4a.22当a=4时,原式=a-4a=a-4×4=0.(本例让学生体会整式的加减运算的实质是去括号、合并同类项这两个知识的综合,有利于将新知识转化为已有的知识,更新学生的知识结构)【例3】 计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).【答案】(1)原式=2x-3y+5x+4y=2x+5x+4y-3y=7x+y.(2)原式=8a-7b-4a+5b=8a-4a-7b+5b=4a-2b.【例4】 一种笔记本的单价是x元,一种圆珠笔的单价是y元,小红买这种笔记本3本,买这种圆珠笔2支;小明买这种笔记本4本,买这种圆珠笔3支,买这些笔记本和圆珠笔,小红和小明一共花费多少钱? 【答案】 小红和小明买笔记本共花费:(3x+4x)元,买圆珠笔共花费(2y+3y)元, 因为,小红和小明一共花费:(3x+4x)+(2y+3y)=(7x+5y)元.3.课堂练习.课本P75练习第1~4题.【答案】 略 四、课堂小结 教师引导学生小结: 1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号; 2(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.第三篇:相反数教学设计
第四篇:《相反数》教学设计
第五篇:2015秋七年级数学上册 2.2 整式加减教学设计 (新版)沪科版