第一篇:数学:3.5平行线的性质与判定-3.5.1平行线的性质教案1(湘教版七年级下)
3.5.1平行线的性质
教学目标:
1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.2、通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.3、培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.教学重点:平行线性质的研究和发现过程是本节课的重点.
教学难点:正确区分平行线的性质和判定是本节课的难点.
教学过程:
一、复习
1、两条直线被第三条直线所截,形成了一些什么角? 画图说明这些角的关系
如果两条平行的直线被第三条直线所截,那么得到的这些角又有什么关系呢?这就是我们这节课所要研究的问题.二、讲授新课
1、P61页的“做一做”
(1)用量角器量出下面的两组角的大小.图1 图2(2)上面的两组角都是同位角.请同学们画两条平行线,然后画两条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?
2、猜想与探索
(1)根据上述的测量,你能猜想得出什么结论吗?
(2)上图1,将∠1沿着FE方向作平移,使M点移动到N点重合,则有CD∥AB,这时∠1变成了∠2,因些∠1=∠2.归纳:平行线性质1 两条平行线被第三条线所截,同位角相等.简单说成:两直线平行,同位角相等.(3)因为∠1=∠2,又因为∠2=∠3(对顶角相等),所以∠1=∠3.归纳得到平行线性质2 两条平行线被第三条线所截,内错角相等.简单地说成:两直线平行,内错角相等.(4)因为∠1=∠2,又因为∠2+∠4=180°(平角定义),所以∠1+∠4=180°.归纳得到平行线性质3 两条平行线被第三条线所截,内旁内角互补.简单地说成:两直线平行,同旁内角互补.3、完成P62的“做一做”的填空.4、讲解P62的例题
例 如图,在A、B两在之间要修建一条公路,在A地测得公路的走向是北偏东80°,即∠ =80°.现在要求在A、B两地同时施工,那么在B地公路走向应按∠ 等于多少度施工?
分析后写出解题过程:
解:因为AC,BD方向相同,所以AC∥BD.∠ 与∠ 是同旁内角,所以 ∠ +∠ =180° 从而∠ =180°-∠ =180°-80°=100° 答:在B地应按∠ =100°方向施工.三、小结与练习
1、P63练习1、2题
2、课堂小结
四、布置作业
P67 A组题 1、3题
第二篇:平行线及其判定与性质练习题
平行线及其判定
1、基础知识
(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.
(5)两条直线平行的条件(除平行线定义和平行公理推论外):
①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.
②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)
6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.
(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)
7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.
(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:
证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)
9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4
10、下列说法中,正确的是().(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.
图6
12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。
13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直
(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离
(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离
14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c
平行线的性质 1.基础知识
(1)平行线具有如下性质
①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.
(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.
证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.
14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
(15题)(16题)
16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.
18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个
22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个
(C)4个(D)3个
23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个
24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.
25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)
(25题)
(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1 图2(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.
28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:
26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.
第三篇:平行线性质1教案
平行线的性质(第1课时)
教学目标
1.使学生理解平行线的性质,能正确区分平行线的性质和判定。
2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力。
3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。教学重点:平行线性质的研究和发现过程
教学难点:正确区分平行线的性质和判定
教学方法:开放式
教学用具:多媒体辅助
教学过程
一、问题引入
请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?
(学生回答)两条直线被第三条直线所截,⑴若同位角相等,则两直线平行;
⑵若内错角相等,则两直线平行;
⑶若同旁内角互补,则两直线平行.
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线AB∥CD,再画一条截线EF与直线AB、CD相交,标出所形成的八个角。
3.学生对测量所得数据进行讨论。
图中哪些角是同位角?它们具有怎样的数量关系?
图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:如果改变AB和CD的位置关系,即直线AB与CD不平行,那么刚才发现的结论还成立吗?请同学们动手画出图形,并用量角器量一量各角的大小,验证一下你的结论.
得到结论:当直线AB与CD不平行时,前面的猜想都不成立。这说明只有AB∥CD时,猜想才能成立.
5.师生归纳平行线的性质,教师板书.(老师)请大家仔细分析一下前面所得出的结论,观察它们的表现形式,你可以将它们的关系分为哪几类呢?
(学生)可以分为两类:一类是两个角相等;另一类是两个角互补.
(1)具有相等关系的两个角,有的是同位角,有的是内错角
(2)具有互补关系的两个角,有的是同旁内角
(老师)不考虑没有定义的角的位置关系,只对同位角、内错角、同旁内角进行归纳总结,若两条平行线被第三条直线所截,你可以得出哪些结论?
若两条平行线被第三条直线所截,则(1)同位角相等,(2)内错角相等,(3)同旁内角互补。
简单地说就是:(板书)两直线平行,(1)同位角相等,(2)内错角相等,(3)同旁内角互补.
这就是本节课我们所要研究的课题--平行线的性质
6.性质证明
从平行线的作法中,我们已经知道公理:同位角相等,两直线平行。现在我们将它作为扩大了的公理得:两条平行线被第三条直线所截,同位角相等,简单地说,就是:
两直线平行,同位角相等.
下面以此为基础,我们来证明:
1.两直线平行,内错角相等;(甲组)
2.两直线平行,同旁内角互补.(乙组)
学生甲组: 学生乙组:
∵AB ∥ CD(已知)∵AB ∥ CD(已知)
∴ ∠1=∠5(两直线平行,同位角相等)∴ ∠1=∠5(两直线平行,同位角相等)又∵∠1=∠3(对顶角相等)又∵∠1+∠2=180°(邻补角的定义)∴∠3=∠5(等量代换)∴∠2+∠5= 180°(等量代换)
7.练习
如图,已知两平行线AB、CD被直线AE所截。C(1)从∠1=110 °可以知道∠2是多少度?为什么? E(2)从∠1=110 °可以知道∠3是多少度?为什么?
(3)从∠1=110 °可以知道∠4是多少度?为什么? D(多媒体演示)
解:(1)∠2=110°
∵AB∥CD(已知)
∴∠1=∠2(两直线平行,内错角相等)
又∵ ∠1=110°(已知)
∴∠2=110°(等量代换)
(2)∠3=110°
∵AB∥CD(已知)
∴∠1=∠3(两直线平行,同位角相等)
又∵ ∠1=110°(已知)
∴∠3=110°(等量代换)
(3)∠4=70°
∵AB∥CD(已知)
∴∠1+∠4=180°(两直线平行,同旁内角互补)
又∵ ∠1=110°(已知)
∴∠4=70°
8.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述
是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.三、课堂小结
本节课你学到了哪些知识?
(1)平行线的性质有哪三条?
(2)如何区分平行线的判定和性质?
四、课堂检测
1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()
A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定
2.如图,若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.A
2D6
3.两条直线被第三条直线所截,则同旁内角互补.()
4.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()
5.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
五、课后作业
课本第139页:
第1、2、3、4题.
七、课后反思
第四篇:初一下平行线判定和性质试题
平行线判定和性质
1.已知如图,指出下列推理中的错误,并加以改正。
(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC,∴∠1=∠2(两直线平行,内错角相等)(3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等)
6.已知如图∠1=∠2,BD平分∠ABC,求证:AB//CD
2.如图,∠1=∠2,∠3=∠4,试向EF是否与GH平行?
3.如图写出能使AB//CD成立的各种题设。
4.已知如图,AB//CD,∠1=∠3,求证:AC//BD。
5.已知如图,AB//CD,AC//BD,求证:∠1=∠3。
7.已知如图,AB//CD,∠1=∠2,求证:BD平分∠ABC。
8.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
9.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7
三、证明角相等的基本方法 第一章、第二章中已学过的关于两个角相等的命(1)同角(或等角)的余角相等;(2)同角(或等角)的补角相等;
(3)对顶角相等;(4)两直线平行,同位角相等;内错角相等;同旁内角互补。10,如图∠1=∠2=∠C,求证∠B=∠C。
11、已知如图,AB//CD,AD//BC,求证:∠A=∠C,∠B=∠D。
12、已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:∠1=∠2。
四、两条直线位置关系的论证。
两条直线位置关系的论证包括:证明两条直线平行,证明两条直线垂直,证明三点在同一直线上。学过证明两条直线平行的方法有两大类
(一)利用角;
(1)同位角相等,两条直线平行;(2)内错角相等,两条直线平行;(3)同旁内角互补,两条直线平行。
(二)利用直线间位置关系:
(1)平行于同一条直线的两条直线平行;(2)垂直于同一条直线的两条直线平行。
13、如图,已知BE//CF,∠1=∠2,求证:AB//CD。
14、如图CD⊥AB,EF⊥AB,∠1=∠2,求证:DG//BC。
2、已经学过的证明两直线垂直的方法有如下二个:(1)两直线垂直的定义
(2)一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直。
(即证明两条直线的夹角等于90o而得到。)
15、如图,已知EF⊥AB,∠3=∠B,∠1=∠2,求证:CD⊥AB。
五、一题多解。
16、已知如图,∠BED=∠B+∠D。求证:AB//CD。
第五篇:七年级平行线的判定与性质练习题
平行线的判定与性质练习2013.3一、选择题
1.下列命题中,不正确的是____[]
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图,可以得到DE∥BC的条件是
______[]
(2题)(3题)(5题)
A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]
A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]
A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
5.如图,如果∠1=∠2,那么下面结论正确的是_________.[]
A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C
6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等B.两直线平行,内错角相等
C.同位角相等,两直线平行D.内错角相等,两直线平行
(6题)(8题)(9题)
7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直B.互相平行C.相交D.无法确定
8.如图,AB∥CD,那么()
A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠
59.如图,在平行四边形ABCD中,下列各式不一定正确的是()
A.∠1+∠2=180°B.∠2+∠3=180°
C.∠3+∠4=180°D.∠2+∠4=180°
10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A.30°B.60°C.90°D.120°
(10题)(11题)
二、填空题
11.如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.
12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
13.同垂直于一条直线的两条直线________.
14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.
(14题)(15题)
15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
三、解答题
16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°. 求证:AF∥CD.
20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
23.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
25.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
答案:CBDABABDDB7.(1)AD∥BC内错角相等,两直线平行(2)AD∥BC同位角相等,两直线平行(3)AB∥DC同旁内角互补,两直线平行8.平行9.平行10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,∴BD∥CE.∴∠BDE+∠DEC=180°.
又∠BDE=∠BCN,∴∠BCN+∠CED=180°,∴BC∥DE,∴∠CAF=∠AFD.
点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.
理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°.
∵BE∥AD,CF∥AD,∴BE∥CF(平行于同一条直线的两直线平行).
∴∠C+∠CBE=180°(两直线平行,同旁内角互补).
∴∠C=180°-∠CBE=180°-30°=150°.
22.解:(1)如答图5-3-2,过点C作CF∥AB,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,∴CF∥DE(平行于同一条直线的两直线平行).
∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补).∴∠BCD=∠1+∠2=45°+35°=80°.
(2)∠B+∠C+∠D=360°.
理由:如答图5-3-2过点C作CF∥AB,得∠B+∠1=180°(两直线平行,补).
∵CF∥AB,DE∥AB,∴CF∥DE(平行于同一条直线的两直线平行).
∴∠D+∠2=180°(两直线平行,同旁内角互补).
∴∠B+∠1+∠2+∠D=360°.
即∠B+∠BCD+∠D=360°.
点拨:辅助线CF是联系AB与DE的纽带.
23.(1)B(2)C
24.解:∠AMG=∠3.
理由:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).
∵∠3=∠4,∴CD∥EF(内错角相等,两直线平行).
∴AB∥EF(平行于同一条直线的两直线平行).
∴∠AMG=∠5(两直线平行,同位角相等).
又∠5=∠3,∴∠AMG=∠3.
点拨:因为∠3=∠5,所以欲证∠AMG=∠3,只要证AM∥EF即可.
25.解:∠A=∠C,∠B=∠D.
理由:∵AD∥BC,AB∥CD,∴∠A+∠B=180°(两直线平行,同旁内角互补).
∠C+∠B=180°.∴∠A=∠C. 同理∠B=∠D.•同旁内角互