高考数学知识点与题型归纳

时间:2019-05-14 11:05:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学知识点与题型归纳》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学知识点与题型归纳》。

第一篇:高考数学知识点与题型归纳

河南省高中数学知识点总结

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

如 :集合Ax|ylgx,By|ylgx,C(x,y)|ylgx,A、B、C中元素各表示什么?

.进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

如 :集合Ax|x2x30,Bx|ax1213

若BAa,则实数的值构成的集合为

(答:1,0,)

3.注意下列性质:

(1)集合a,a,„„,a的所有子集的个数是2;12nn2)若ABABA,ABB;

(3)德摩根定律:

CABCACB,CABCACBUUUUUU

4.你会用补集思想解决问题吗?(排除法、间接法)

如 :已知关于x的不等式0的解集为M,若3M且5M,求实数a2的取值范围。

ax5xaa·35(∵3M,∴203a

a·55∵5M,∴205a5a1,9,25)3.可以判断真假的语句叫做命题,逻辑连接词有“或”(),“且”()和“非”().pq为真,当且仅当p、q均为真

若pq为真,当且仅当p、q至少有一个为真

p为真,当且仅当p为假

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

例:函数yx4x的定义域是2lgx3

(答:0,22,33,4)

10.如何求复合函数的定义域? 

如 :函数f(x)的定义域是a,b,ba0,则函数F(x)f(x)f(x)的定义域是_____________。

(答:a,a)

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

如:fx1exx,求f(x).tx1,则t0

xt

1∴

∴ ft()et12t122f(xe)x1x0

∴ 2x1

212.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

1xx0:求函数f(x)的反函数

如 2xx0x1x1答:f()x)

(xx0

113.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

③设yf(x)的定义域为A,值域为C,aA,bC,则f(a)=bf(b)a

 ff(a)f(b)a,ff(b)(fa)b1111

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

(yf(u),u(x),则yf(x)(外层)(内层)

当 内、外层函数单调性相同时f(x)为增函数,否则f(x)为减函数。):求ylogx2x的单调区间

如 122

2(设uxxu2,由0则0x22logu,ux1,如图:

且 112 u O 1 2 x

x(0,1]时,u,又logu,∴y

当 12x[1,2)时,u,又logu,∴y

当 12

∴„„)

15.如何利用导数判断函数的单调性?

区间a,b内,若总有f'(x)0则f(x)为增函数。(在个别点上导数等于

在 零,不影响函数的单调性),反之也对,若f'(x)0呢?

3:已知a0,函数f(x)xax在1,上是单调增函数,则a的最大

值是()

A.0 B.1 2 C.2 D.3

aa令fx'()3xa3xx0

(33x

则aa或x 33a3已知f(x)[在1,)上为增函数,则1,即a 由

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

若 f(x)f(x)总成立f(x)为奇函数函数图象关于原点对称

若 f(x)f(x)总成立f(x)为偶函数函数图象关于y轴对称

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

(2)若f(x)是奇函数且定义域中有原点,则f(0)0。xa·2a2

如 :若f(x)x为奇函数,则实数a2

1(∵f(x)为奇函数,xR,又0R,∴f(0)00a·2a20,∴)a1

即021x2如:f(x)为定义在(1,1)上的奇函数,当x()0,1时,f(x),又 x41求f(x)在1,1上的解析式。x2

(令x1,0,则x0,1,fx()x41xx22f(x)为奇函数,∴f(x)x

又 x4114xx(1,0)2x01x4f()00,∴fx())

又 x2x0,1x41

17.你熟悉周期函数的定义吗?

若存在实数T(T0),在定义域内总有fxTf(x),则f(x)为周期

(函数,T是一个周期。)

如:若fxaf(x),则 

(答:f(x)是周期函数,T2a为f(x)的一个周期)

又 如:若f(x)图象有两条对称轴xa,xb

即 f(ax)(fax)(,fbx)(fbx)

则 f(x)是周期函数,2ab为一个周期

如:

18.你掌握常用的图象变换了吗?

(x)与f(x)的图象关于y轴对称

f(x)与f(x)的图象关于x轴对称

f(x)与f(x)的图象关于原点对称

f

f(x)与f(x)的图象关于直线yx对称1(x)与f(2ax)的图象关于直线xa对称

f(x)与f(2ax)的图象关于点(a,0)对称

f

yf(x)图象

将yf(xa)b上移b(b0)个单位

yf(xa)b下移b(b0)个单位

注意如下“翻折”变换:

yf(xa)左移a(a0)个单位

yf(xa)右移a(a0)个单位

f(x)f(x)f(x)f(|x|)

如 :f(x)logx12出及ylogx1yxlog1的图象

作 22 y y=log2x O 1 x

19.你熟练掌握常用函数的图象和性质了吗?

(k<0)y(k>0)y=b O’(a,b)O x x=a

1)一次函数:ykxbk0

(

(2)反比例函数:yk0推广为ybk0是中心O'()a,b的双曲线。

24acbb2

(3)二次函数yaxbxca0ax图象为抛物线42aa2kxkxa2b4acbb点坐标为,对称轴x

顶 a4a2a224acb口方向:a0,向上,函数y

开 min4a24acb0,向下,y

a max4a

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 axbxc0,0时,两根x、x为二次函数yaxbxc的图象与x轴122 的两个交点,也是二次不等式axbxc0(0)解集的端点值。

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

0b 如 :二次方程axbxc0的两根都大于kka2fk()0 y(a>0)O k x1 x2 x

一 根大于k,一根小于kf(k)04)指数函数:,yaa01a

(5)对数函数ylogxa01,a

(a

由图象记性质!

(注意底数的限定!)

x y y=ax(a>1)(01)1 O 1 x(0

6)“对勾函数”yxk0

(

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

kx y k O k x

20.你在基本运算上常出现错误吗?

指 数运算:a1(a0),a(a0)p

aa(a0),amnnmmn0p1a1nma(a0)数运算:logM·NlogMlogNM0,N0

对 aaa

logaM1logaMlogaN,loganMlogaM Nnlogx

对 数恒等式:aaxc数换底公式:logblogblogb

对 maaalogblogacnnm

21.如何解抽象函数问题?

(赋值法、结构变换法)

如:(1)xR,f(x)满足f(xy)f(x)f(y),证明f(x)为奇函数。

先令xy0f(0)0再令yx,„„)

2)xR,f(x)满足f(xy)f(x)f(y),证明f(x)是偶函数。

先令xytf(t)(tf)(t·t)

(ft()ft()f(t)f(t)

∴ f()tf(t)„„)

3)证明单调性:f(x)fxxx„„

(221

222.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)



如求下列函数的最值:

(1)y2x3134x

()2y2x4 x322x

(3)x3,yx(4)yx49x设x3cos,0,(5)y4x,x(01,]

23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

(l·R,S扇29x11l·R·R2)22 R 1弧度 O R

24.熟记三角函数的定义,单位圆中三角函数线的定义

inMP,cosOM,tanAT

s

y T B S P α O M A x

:若0,则sin,cos,tan的大小顺序是

又如:求函数y812cosx的定义域和值域。

2∵12cosx)12sinx0

(2

∴sinx2,如图:2

∴ 2kx2kkZ,0y12

25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? 54

4inx1,cosx s

y ytgx x    O  22

称点为k,0,kZ

对 sinx的增区间为2k,2kkZ

y 222

减 区间为2k,2kkZ2

2图 象的对称点为k,0,对称轴为xkkZ

yx cos的增区间为2k,2kkZ

减 区间为2k,22kkZ

图 象的对称点为k,0,对称轴为xkkZ322

y tanx的增区间为k,kkZ226.正弦型函数y=Asinx+的图象和性质要熟记。或yAcosx

(1)振幅|A|,周期T

2||

若 fxA,则xx为对称轴。00fx0,则x,0为对称点,反之也对。

若 00

(2)五点作图:令x依次为0,,2,求出x与y,依点(x,y)作图象。3223)根据图象求解析式。(求A、、值)

(x)01图列出

如 (x)22条件组求、值

正切型函数yAtanx,T ||

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

如 :cosx,x,求x值。

(∵x,∴x,∴x,∴x)

28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

如:函数ysinxsin|x|的值域是 6223237551326636412x0时,y2sinx2,2,x0时,y0,∴y2,2)

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

x'xha(h,k)

(1)点P(x,y)P'(x',y'),则y'yk平移至

(2)曲线f(x,y)0沿向量a(h,k)平移后的方程为f(xh,yk)0:函数y2sin2x1的图象经过怎样的变换才能得到ysinx的 如 图象?

41横坐标伸长到原来的2倍y2sin2x1y2sin2x(424上平移1个单位4 2sinx1y2sinx1y2sinx4左平移个单位12 ysinx)纵坐标缩短到原来的倍

30.熟练掌握同角三角函数关系和诱导公式了吗?

:1sincossectantan·cotcos·sectan

如 22224sincos0„„称为1的代换。

2k·”化为的三角函数——“奇变,偶不变,符号看象限”,“

2“奇”、“偶”指k取奇、偶数。

如:costansin21

又如:函数y

A.正值或负值 9746

sintan,则y的值为

coscotB.负值

C.非负值

D.正值

sinsin2sincos1cos

(y20,∵0)coscossin1cossin

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

s insincoscossinsins22incos令令22coscossinsincos2cossin costantantan22 2cos112sin 1tan·tantan2

2tan 21tan 1cos22 1cos22sin22cos

sinbcosabsin,tan

a 22baincos2sin

s 34in3cos2sin

s 

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

1)角的变换:如,„„

(

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

222:已知,1tan,求tan2的值。

如 sincos1cos223sincoscos1 1,∴tan2sin22sin

2又tan(由已知得:221tantan3

1∴ tan2tan2)2181tan·tan1·32

32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

222bca

余 弦定理:abc2bccosAAcos2bc22

2(应用:已知两边一夹角求第三边;已知三边求角。)

a2RAsinabc

正 弦定理:2Rb2RsinBsinAsinBsinCc2RCsin S a·bsinC2

∵ ABC,∴ABC

∴sinABsinC,sin

如ABC中,2sin

(1)求角C;2c

(2)若ab,求cos2Acos2B的值。2222ABCcos 22ABcos2C1 2

((1)由已知式得:1cosAB21cosC12ABC,∴2cosCcosC10

2cosC或cosC1(舍)

∴ 120C,∴C

又32212232222sinA2sinBsinCsin

343cos2A1cos2B

142)由正弦定理及abc得:

(∴ cos2Acos2B)

33.用反三角函数表示角时要注意角的范围。

反 正弦:arcsinx,,x113422余弦:arccosx0,,x1,1

反 正切:arctanx,xR

34.不等式的性质有哪些?

22c0acbc

(1)ab,c0acbc

(2)ab,cdacbd

(3)ab0,cd0acbd

(4)ab0,ab0nn

(5)ab0ab,abnn11ab11ab6)|x|aa0axa,|x|axa或xa

(:若,0则下列结论不正确的是()

A.ab222 B.abb11ab.|||||abab|

C

答案:C

35.利用均值不等式:

abD.2 baab22

a b2aba,bR;;ab2abab求最值时,你是否注22 意到“a,bR”且“等号成立”时的条件,积(ab)或和(ab)其中之一为定值?(一正、二定、三相等)

注意如下结论:

22abab2ababab,R 22ab且仅当ab时等号成立。

当 bcabbccaa,bR

a

当 且仅当abc时取等号。

a b0,m0,n0,则222bbmana1 aambnb 如:若x0,23x的最大值为

x

(设y23x22122434x且仅当3x,又x0,∴x时,y243)

当 max

又 如:x2y1,则24的最小值为

(∵222222,∴最小值为22)

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

如 :证明1„222(1x2yx2y14x233xy11231n111111„„1„„ 222122323nn1n1111111„„223n1n

122)n7.解分式不等式aa0的一般步骤是什么?

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始 f(x)g(x)

:x1x1x20

如 2

339.解含有参数的不等式要注意对字母参数的讨论

如 :对数或指数的底分a1或0a1讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

例 如:解不等式|x3|x1(解集为x|x)1.会用不等式|a||b||ab||a||b|证明较简单的不等问题

如 :设f(x)xx13,实数a满足|xa|1

求 证:f(x)f(a)2(|a|1)

证明:| f(x)(fax)||(x13)(aa13)|22212|(xa)(xa1)|(|xa|1)

|xax||a1||xa1|

|x||a|1

又 |x||a||xa|1,∴|x||a|1f(x)(fa)2|a|22|a|1

∴ 

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

:af(x)恒成立af(x)的最小值

如 f(x)恒成立af(x)的最大值

a f(x)能成立af(x)的最小值

a

如:对于一切实数x,若x3x2a恒成立,则a的取值范围是

设ux3x2,它表示数轴上到两定点2和3距离之和

(325,∴5a,即a

5u min者:x3x2x3x255,∴a)

或 

43.等差数列的定义与性质

定义:aad(d为常数),aan1d

n1nn1

等 差中项:x,A,y成等差数列2Axy

前n项和Snaannn1 1nnad212

性 质:a是等差数列n1)若mnpq,则aaaa;

(mnpq

(2)数列a,a,kab仍为等差数列;2n12nn

S,SS,SS„„仍为等差数列;n2nn3n2n3)若三个数成等差数列,可设为ad,a,ad;

m2m14)若a,b是等差数列S,T为前n项和,则;

(nnnnaSbTm2m1

(5)a为等差数列Sanbn(a,b为常数,是关于n的常数项为nn20的二次函数)

2S 的最值可求二次函数Sanbn的最值;或者求出a中的正、负分界nnn项,即:

当 a0,d0,解不等式组得S达到最大值时的n值。可1na0na0n1a0n

当 a0,d0,由得S达到最小值时的n值。可1na0n1

如 :等差数列a,S18,aaa3,S1,则nnnnn1n2

3(由aaa33a3,∴a1nn1n2n1n1S

又3aa113·33a1,∴a

222311naanaa·n31S1n2n18

∴ n222n27)

44.等比数列的定义与性质 n1义:q(q为常数,q0),aaq

定 n1aann 等 比中项:x、G、y成等比数列Gxy,或Gxy2na(q1)1n

前 n项和:S(要注意!)aqn11(q1)1q

性 质:a是等比数列n1m)若npqa,则·aa·a

(mnpq

(2)S,SS,SS„„仍为等比数列nn2n3n2n5.由S求a时应注意什么?nn

(n1时,aS,n2时,aSS)11nnn

146.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

11122211时,a215,∴a1 解:n 112111

n 2时,aa„„a2n152122n1n12221

 12得:a2nn

2如 :a满足aa„„a2n51n12n2n

∴a2 nn114(n1)a

∴ nn12(n2)[练习]

列a满足SSa,a4,求a

数 nnn1n11n

(注意到an1Sn1Sn代入得:53Sn14 SnnS4,∴S是等比数列,S4

又 1nn2时,aSS„„3·4

n nnn1n1

(2)叠乘法

n1

例 如:数列a中,a3,,求an1nana1nn

解:aa2n1a2a3n1n1·„„·„„,∴

aa3na1a2n121n3n

又a3,∴a1n

(3)等差型递推公式

由 aaf(n),aa,求a,用迭加法nn110nn2时,aa(2)21faaf(3)32

两边相加,得:„„„„aa(n)nn1f

a af(2)f(3)„„f(n)n1

∴ aaf(23)(f)„„f(n)n0[练习]

数 列a,a1,a3an2,求an1nn1nn1a1)

(n3

(4)等比型递推公式

a cadc、d为常数,c0,c1,d0nn

1可 转化为等比数列,设axcaxnn112nacac1x

 nn1

令(c1)xd,∴xd c1a是首项为,ac为公比的等比数列

∴ n1d1cdc1a

∴nddn1a·c 1c1c1dnd1c c1c1aa

∴n1[练习]

数 列a满足a9,3aa4,求an1n1nn4

(a8n3

(5)倒数法 n1 1)如:a1,a

例1n12an,求a na2nn

由已知得:2111a

a2a2an1nn

∴1an111 an2为等差数列,1,公差为

 1an1a1121n1·n1

 

∴an1an11222 n1

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

:a是公差为d的等差数列,求

如n1 aak1kk1n

解:由n11111d0 adaa·adkkkak1kk1an1111

∴ aadaak1kkk11kk1

1111111„„daaaaaa1223nn1111daa1n1

[练习]

和:1

求111„„

12123123„„n

(a„„„„,S2)nn

(2)错位相减法:

1n1

若 a为等差数列,b为等比数列,求数列ab(差比数列)前n项nnnn 和,可由SqS求S,其中q为b的公比。nnnn

如 :Sx123x4x„„nx1n

x ·Sx2x3x4x„„n1xnx2n234n1n23n1

 12:11xSxx„„xnxn2n1n1xnx

x 1时,Snnn21x1xnn1

x 1时,S123„„nn

2(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

Saa„„aan12n1n 相加Saa„„aannn121Saaaa„„aa„„n1n2n11n[练习]

2x111 已知f(x),则f(1)f(2)ff(3)ff(4)f 22341x221x1x由fx()f1(22221xx1x1x11x1x2原式f(1)f(2)ff(3)ff(4)f

∴ 

121314111113)22

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

p1rp12r„„p1nrpnr„„等差问题

S nnn12

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p()1rx1rx1r„„x1rxnnn11r1r1

 xx11rrn1n

2∴xpr1rn1rn1

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(1)分类计数原理:Nmm„„m12n

(mi为各类办法中的方法数)

分 步计数原理:Nm·m„„m12n

(m为各步骤中的方法数)i

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

m 列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为A.nnn1n2„„nm1

Anmn!mn nm!定:0!

1规

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

m 同元素中取出m个元素的一个组合,所有组合个数记为C.nmnn1„„nm1An!n

C mm!m!nm!Ammn定:C1

规 n04)组合数性质:

C,CCC,CC„„C

2C nnnnn1nnn

50.解排列与组合问题的规律是: mnmmm1m01nn

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

x89,90,91,92,93,(i1,2,3,4)且满足xxxx,i123

4则这四位同学考试成绩的所有可能情况是()

A.24 B.15 C.12 D.10

解析:可分成两类: 1)中间两个分数不相等,(有 C5(种)

5(2)中间两个分数相等

x xxx1234

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

(ab)CaCabCab„Cab„Cbnnnnn

二 项展开式的通项公式:TCab(r0,1„„n)r1n

C 为二项式系数(区别于该项的系数)n

性质:

(1)对称性:CCr0,1,2,„„,nnn

(2)系数和:CC„C2nnn

C CCC„CC„2nnnnnn

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第 135024n101nnn0n1n12n22rnrrnnrnrrrrnrn21项,二项式系数为C;n为奇数时,()n1为偶数,中间两项的二项式 n2nn1n122系数最大即第项及第1项,其二项式系数为CC nn2211n1n1:在二项式x1的展开式中,系数最小的项系数为(用数字

如 表示)∵n=11

∴ 共有12项,中间两项系数的绝对值最大,且为第6或第7项

由 Cx(1),∴取r5即第6项系数为负值为最小:11

 CC4261111

又 如:12xaaxax„„axxR,则***465122r11rr aaaaaa„„aa(用数字作答)01020302004

(令x0,得:a10

令 x1,得:aa„„a1022004

∴ 原式2003aaa„„a2003112004)0012004

52.你对随机事件之间的关系熟悉吗?

(1)必然事件,P)1,不可能事件,P()02)包含关系:AB,“A发生必导致B发生”称B包含A。

A B

3)事件的和(并):AB或AB“A与B至少有一个发生”叫做A与B

(的和(并)。

4)事件的积(交):A·B或AB“A与B同时发生”叫做A与B的积。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

A·B

(6)对立事件(互逆事件):

A不发生”叫做A发生的对立(逆)事件,A

A A,AA

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

与B独立,A与B,A与B,A与B也相互独立。

A

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

()A

PA包含的等可能结果m n一次试验的等可能结果的总数

(2)若A、BP互斥,则ABP(A)P(B)

(3)若A、B相互独立,则PA·BPA·PB

(4)P(A)1P(A)

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

kkk次的概率:P(k)Cp1p nnnk

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

C224

P 1215C10

(2)从中任取5件恰有2件次品;

23CC1046

P 2521C10

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

∴ mC·4643223C·4·644

∴ P33125102213

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

∴ nAm,CAA10456223CAA10456

∴ P4521A105223

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(1)算数据极差xx;maxmin

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

中,频率小长方形的面积组距×

其本平均值:xxx„„x

样 12n频率组距1n1222 样 本方差:Sxxxx„„xx12nn

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

42C10C5)

(6C1

556.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

(2)向量的模——有向线段的长度,||a

(3)单位向量|a|1,a00a|a|

(4)零向量0,|0|0长度相等5)相等的向量ab

(方向相同

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

b ∥a(b0)存在唯一实数,使ba

(7)向量的加、减法如图: 



O AOBOC

O AOBBA

(8)平面向量基本定理(向量的分解定理)

e,e是平面内的两个不共线向量,a为该平面任一向量,则存在唯一12实数对、,使得aee,e、e叫做表示这一平面内所有向量 12121212的一组基底。

(9)向量的坐标表示

i,j是一对互相垂直的单位向量,则有且只有一对实数x,y,使得 axiyj,称(x,y)为向量a的坐标,记作:ax,y,即为向量的坐标表示。

axy,bx,y

设 1122abxyy,yxy,xy

则,11121122ax,yx,y

1111 Ax,y,Bx,y

若 1122ABxx,yy

则 212122ABxxyy,A、B两点间距离公式

|| 21

2157.平面向量的数量积

(1)a·b|a|·|b|cos叫做向量a与b的数量积(或内积)。为向量a与b的夹角,0,

B  b O  a

D A

数量积的几何意义:

·b等于|a|与b在a的方向上的射影|b|cos的乘积。

a

(2)数量积的运算法则

a·bb·a

(ab)ca·cb·c

② 

③ a·bx,y·x,yxxyy11221212

注 意:数量积不满足结合律(a·b)·ca·(b·c)

(3)重要性质:设ax,y,bx,y1122

① a⊥ba·b0x·xy·y01212

② a∥ba·b|a|·|b|或a·b|a|·|b|

 ab(b0,惟一确定)

 xyxy01221

③ a||axy,|a·b|||a·||b

④cos[练习] 222121xxyya·b1212 2222xy·xy|a|·|b|1122

(1)已知正方形ABCD,边长为1,ABa,BCb,ACc,则|abc|

答案:22 

(2)若向量ax,1,b4,x,当x

答案:2 时a与b共线且方向相同

3)已知a、b均为单位向量,它们的夹角为60,那么|a3b|

(答案:158.线段的定比分点 oPx,y,Px,y,分点Px,y,设P、P是直线l上两点,P点在设 11122212 l上且不同于P、P,若存在一实数,使PPPP,则叫做P分有向线段1212 PP所成的比(0,P在线段PP内,0,P在PP外),且121212xxxx1212xx12,P为PP中点时, 12yyyy212y1y12:ABC,Ax,y,Bx,y,Cx,y

如 1122331 则ABC重心G的坐标是xxxyy3y123,3

3※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线∥线线∥面面∥面

 线⊥线线⊥面面⊥面判定性质线∥线线⊥面面∥面

线面平行的判定:

∥b,b面,aa∥面

a

a b 

线面平行的性质:

 ∥面,面,ba∥b

三垂线定理(及逆定理):

A⊥面,AO为PO在内射影,a面,则

P

a⊥OAa⊥PO;a⊥POa⊥AO

线面垂直:

P O a

⊥b,a⊥c,b,c,bcOa⊥

a

a O α b c

面面垂直:

a ⊥面,a面⊥

面 ⊥面,l,a,aa⊥l⊥ α a l β

⊥面,b⊥面ab∥

a

面 ⊥a,面⊥a∥ a b 

60.三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

=0时,b∥或b

 o

(3)二面角:二面角l的平面角,0180oo

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。[练习]

(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

证 明:coscos·cos A θ O β B C D α

(为线面成角,∠AOC=B,∠OC=)

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。

①求BD1和底面ABCD所成的角;

②求异面直线BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

D1 C1 A1 B1 H G D C A B

(①arcsin;②60;③arcsin)

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

P F D C A E B 34o63

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线„„)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABCD—A1B1C1D1中,棱长为a,则:

(1)点C到面AB1C1的距离为___________;

(2)点B到面ACB1的距离为____________;

(3)直线A1D1到面AB1C1的距离为____________;

(4)面AB1C与面A1DC1的距离为____________;

(5)点B到直线A1C1的距离为_____________。

D C A B D1 C1 A1 B1

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

R tSOB,RtSOE,RtBOE和RtSBE

它们各包含哪些元素?

S C·h'(C——底面周长,h'为斜高)正棱锥侧12底面积×高

V 锥

63.球有哪些性质?

(1)球心和截面圆心的连线垂直于截面r13R2d2

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(4)S球4R,V球24R3

3(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

如:一正四面体的棱长均为2,四个顶点都在同一球面上,则此球的表面 积为()

A.3B.4C.33D.6

答案:A

64.熟记下列公式了吗?

(1)l直线的倾斜角0,,ktany2y1,x1x2

x2x12

P1x1,y1,P2x2,y2是l上两点,直线l的方向向量a1,k

(2)直线方程:

点斜式:yy0kxx0(k存在)

斜截式:ykxb

截距式:xy1 ab

一般式:AxByC0(A、B不同时为零)

(3)点Px0,y0到直线l:AxByC0的距离dAx0By0CAB22

(4)l1到l2的到角公式:tank2k1

1k1k l1与l2的夹角公式:tank2k1

1k1k2

65.如何判断两直线平行、垂直?

A1B2A2B1l1∥l2

A1C2A2C1

k1k2l1∥l2(反之不一定成立)

A1A2B1B20l1⊥l2

·k1l⊥l

k 121

266.怎样判断直线l与圆C的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

联立方程组关于x(或y)的一元二次方程“”0相交;0相切;0相离

68.分清圆锥曲线的定义

椭圆PFPF2a,2a2cFF1212

第 一定义双曲线PFPF2a,2a2cFF1212抛物线PFPK

第二定义:ePFPKc a

0e1椭圆;e1双曲线;e1抛物线

y

b O F1 F2 a x a2x c

22xy

221ab0

ab

abc 222

22xy1a0,b0

22 ab

ab

c222 e>1 e=1 P 0

x2y2x2y2 69.与双曲线221有相同焦点的双曲线系为220

abab

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

弦 长公式PP1kxxxx4121212221k12yy4yy

1212

2

71.会用定义求圆锥曲线的焦半径吗?

如:

y P(x0,y0)K F1 O F2 x l

x2y2

221

ab2PFa2e,PFexexa

200PKcFexa

P 10 y A P2 O F x P1 B

y 2pxp02

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

如 :椭圆mxny1与直线y1x交于M、NM两点,原点与N中点连2m线的斜率为,则的值为2n

答案:

m2 n

273.如何求解“对称”问题?

(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

(由a,bx'2ax,y'2by)xx'yy'22要证明A'2ax,2by也在曲线C上,即f(x')y'

只 2)点A、A'关于直线l对称

(kk1AA'·l

 AA'中点坐标满足l方程AA'⊥lAA'中点在l上

xrcos74.圆xyr的参数方程为(为参数)

yrsin222xacosx2y

2椭圆221的参数方程为(为参数)

abybsin

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

第二篇:序言2-高考知识点题型

高考知识点题型

1.集合问题

2.复数的分类、几何意义及四则运算

3.四种命题、充要条件、或 且 非形式的判断、全称及特称命题

4.切线方程、导数法则及公式、导数的三个应用

5.等差数列、等比数列的对比及求和的方法

6.当型、直到循环结构的程序框图及语句

7.向量的加减运算及坐标运算、平面向量的数量积

8.三角函数的诱导公式、三角函数的图像和性质、和 差 二倍角公式

9.概率计算公式

10.线性规划问题

11.函数与导数的综合应用

12.解析几何问题:三大圆锥曲线的性质及应用

13.频率分布直方图、众数 中位数平均数,茎叶图等知识

14.三角函数平移变换及求解析式、伸缩变换

15.三视图、柱 锥 台 球的体积和表面积公式

16.立体几何命题的判断

17.三角函数、数列问题(正弦、余弦定理)

18.立体几何问题:证明、求角、距离

19.回归分析、独立性检验原理、概率知识

20.解析几何:三大圆锥曲线问题

21.函数与导数问题

22.几何问题

23.极坐标与参数方程

24.不等式

第三篇:高考数学题型全归纳

2010-2016高考理科数学题型全归纳

题型

1、集合的基本概念

题型

2、集合间的基本关系

题型

3、集合的运算

题型

4、四种命题及关系

题型

5、充分条件、必要条件、充要条件的判断与证明

题型

6、求解充分条件、必要条件、充要条件中的参数范围

题型

7、判断命题的真假

题型

8、含有一个量词的命题的否定

题型

9、结合命题真假求参数的范围

题型

10、映射与函数的概念

题型

11、同一函数的判断

题型

12、函数解析式的求法

题型

13、函数定义域的求解

题型

14、函数定义域的应用

题型

15、函数值域的求解

题型

16、函数的奇偶性

题型

17、函数的单调性(区间)

题型

18、函数的周期性

题型

19、函数性质的综合

题型20、二次函数、一元二次方程、二次不等式的关系

题型

21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件

题型

22、二次函数“动轴定区间”、“定轴动区间”问题

题型

23、指数运算及指数方程、指数不等式

题型

24、指数函数的图像及性质

题型

25、指数函数中的恒成立的问题

题型

26、对数运算及对数方程、对数不等式

题型

27、对数函数的图像与性质

题型

28、对数函数中的恒成立问题

题型

29、幂函数的定义及基本性质

题型30、幂函数性质的综合应用

题型

31、判断函数的图像

题型

32、函数图像的应用

题型

33、求函数的零点或零点所在区间

题型

34、利用函数的零点确定参数的取值范围

题型

35、方程根的个数与函数零点的存在性问题

题型

36、函数与数列的综合 题型

37、函数与不等式的综合 题型

38、函数中的创新题

题型

39、导数的定义

题型40、求函数的导数

题型

41、导数的几何意义

题型

42、利用原函数与导函数的关系判断图像

题型

43、利用导数求函数的单调区间

题型

44、含参函数的单调性(区间)

题型

45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围

题型

46、函数的极值与最值的求解

题型

47、方程解(函数零点)的个数问题

题型

48、不等式恒成立与存在性问题

题型

49、利用导数证明不等式

题型50、导数在实际问题中的应用

题型

51、终边相同的角的集合的表示与识别

题型

52、等分角的象限问题

题型

53、弧长与扇形面积公式的计算

题型

54、三角函数定义题

题型

55、三角函数线及其应用

题型

56、象限符号与坐标轴角的三角函数值

题型

57、同角求值---条件中出现的角和结论中出现的角是相同的 题型

58、诱导求值与变形

题型

59、已知解析式确定函数性质

题型60、根据条件确定解析式

题型61、三角函数图像变换

题型62、两角和与差公式的证明

题型63、化简求值

题型64、正弦定理的应用

题型65、余弦定理的应用

题型66、判断三角形的形状

题型67、正余弦定理与向量的综合 题型68、解三角形的实际应用

题型69、共线向量的基本概念

题型70、共线向量基本定理及应用

题型71、平面向量的线性表示

题型72、平面向量基本定理及应用

题型73、向量与三角形的四心

题型74、利用向量法解平面几何

题型75、向量的坐标运算

题型76、向量平行(共线)、垂直充要条件的坐标表示

题型77、平面向量的数量积

题型78、平面向量的应用

题型79、等差、等比数列的通项及基本量的求解

题型80、等差、等比数列的求和

题型81、等差、等比数列的性质应用

题型82、判断和证明数列是等差、等比数列

题型83、等差数列与等比数列的综合 题型84、数列通项公式的求解

题型85、数列的求和

题型86、数列与不等式的综合

题型87、不等式的性质

题型88、比较数(式)的大小与比较法证明不等式

题型89、求取值范围

题型90、均值不等式及其应用

题型91、利用均值不等式求函数最值

题型92、利用均值不等式证明不等式

题型93、不等式的证明

题型94、有理不等式的解法

题型95、绝对值不等式的解法

题型96、二元一次不等式组表示的平面区域

题型97、平面区域的面积

题型98、求解目标函数的最值

题型99、求解目标函数中参数的取值范围

题型100、简单线性规划问题的实际运用

题型101、不等式恒成立问题中求参数的取值范围

题型102、函数与不等式综合 题型103、几何体的表面积与体积

题型104、球的表面积、体积与球面距离

题型105、几何体的外接球与内切球

题型106、直观图与斜二测画法

题型107、直观图?三视图

题型108、三视图?直观图---简单几何体的基本量的计算

题型109、三视图?直观图---简单组合体的基本量的计算

题型

110、部分三视图?其余三视图

题型111、证明“点共面”、“线共面”或“点共线”及“线共点”

题型112、异面直线的判定

题型113、证明空间中直线、平面的平行关系

题型114、证明空间中直线、平面的垂直关系

题型115、倾斜角与斜率的计算

题型116、直线的方程

题型117、两直线位置关系的判定

题型118、有关距离的计算

题型119、对称问题

题型120、求圆的方程

题型121、直线系方程和圆系方程

题型122、与圆有关的轨迹问题

题型123、圆的一般方程的充要条件

题型124、点与圆的位置关系判断

题型125、与圆有关的最值问题

题型126、数形结合思想的应用

题型127、直线与圆的相交关系

题型128、直线与圆的相切关系

题型129、直线与圆的相离关系

题型130、圆与圆的位置关系

题型131、椭圆的定义与标准方程

题型132、离心率的值及取值范围

题型133、焦点三角形

题型134、双曲线的定义与标准方程

题型135、双曲线的渐近线

题型136、离心率的值及取值范围

题型137、焦点三角形

题型138、抛物线的定义与方程

题型139、与抛物线有关的距离和最值问题

题型140、抛物线中三角形、四边形的面积问题

题型141、直线与圆锥曲线的位置关系

题型142、中点弦问题

题型143、弦长与面积问题

题型144、平面向量在解析几何中的应用

题型145、定点问题

题型146、定值问题

题型147、最值问题

题型148、已知流程框图,求输出结果

题型149、根据条件,填充不完整的流程图

题型150、求输入参量

第四篇:高考知识点数学

高中数学知识点总结

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

2.进行集合的交、并、补运算时,不要忘记集合本身和空集 的特殊情况。

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

4.你会用补集思想解决问题吗?(排除法、间接法)

5.可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和

“非.若p q为真,当且仅当p、q均为真

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:A→B,是否注意到A 中元素的任意性和B 中与之对应元素的哪几种对应能构成映射?

(一对一,多对一,允许B 中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12.反函数存在的条件是什么?

(一一对应函数)

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

15.如何利用导数判断函数的单调性?

16.你熟悉周期函数的定义吗?

17.你掌握常用的图象变换了吗?

f(x)与f(x)的图象关于y轴对称

f(x)与 f(x)的图象关于x轴对称

f(x)与 f(x)的图象关于原点对称

f(x)与f 1(x)的图象关于直线y ≪ x 对称

f(x)与f(2a x)的图象关于直线x ≪ a 对称

f(x)与 f(2a x)的图象关于点(a,0)对称)⊲ 0

18.指数函数、对数函数【由图象记性质!(注意底数的限定!)】

19.如何解抽象函数问题?

(赋值法、结构变换法)

20.掌握求函数值域的常用方法了吗?

(二次函数法、配方法,反函数法,换元法,均值定理法,判别式法,利用函数单调性法等。)

21.熟记三角函数的定义,单位圆中三角函数线的定义

22.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗

23.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

(平移变换、伸缩变换)

24.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角求值,尽可能求值。)

具体方法:

(1)角的变换:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

(应用:已知两边一夹角求第三边;已知三边求角。)

25.利用均值不等式:

(一正、二定、三相等)

26.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

27.解分式不等式的一般步骤是什么?

(移项通分,分子分母因式分解,x 的系数变为1,穿轴法解得结果。)

28.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

29.解含有参数的不等式要注意对字母参数的讨论

30.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

(按不等号方向放缩)

31.你熟悉求数列通项公式的常用方法吗?

(1)求差(商)法

(2)叠乘法

(3)等差型递推公式

(4)等比型递推公式

(5)倒数法

32.你熟悉求数列前n 项和的常用方法吗?

(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

(2)错位相减法:

33.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p 元,每期利率为r,n 期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息种类)

若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第款日,如此下去,第n 次还清。如果每期利率为r(按复利),那么每期应还x 元,满足

p——贷款数,r——利率,n——还款期数

34.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(1)分类计数原理

(2)排列: 从n 个不同元素中,任取m(m ≤ n)个元素,按照一定的顺序列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为

(3)组合: 从n 个不同元素中任取m(m ≤ n)个元素并组成一组,叫做从同元素中取出m个元素的一个组合,所有组合个数记为C

35.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间同元素分组可采用隔板法,数量不大时可以逐一排出结果。

36.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体的概率相等,体现了抽样的客观性和平等性。

37.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估的期望和方差。

要熟悉样本频率直方图的作法:

列频率分布表;

画频率直方图。

38.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

(2)向量的模——有向线段的长度

(3)单位向量

(4)零向量

(5)相等的向量:长度相等、方向相同

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法

(8)平面向量基本定理(向量的分解定理)

(9)向量的坐标表示

39.平面向量的数量积

(1)a · b 或a · b 叫做向量a 与b 的数量积(或内积)。

三角形的重心、垂心、外心、内心及其性质吗?

40.立体几何中平行、垂直关系证明的思路清楚吗?

三垂线定理(及逆定理):↦

41.三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(3)二面角:(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB 求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者转化法)。

42.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

43.球有哪些性质?

(1)球心和截面圆心的连线垂直于截面r ≪ R 2 d

2(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R 与内切球半径r 之比为R:1。

(4)到角公式:

夹角公式

45.如何判断两直线平行、垂直?

46.怎样判断直线l 与圆C 的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

47.怎样判断直线与圆锥曲线的位置?

联立方程组关于(或)的一元二次方程“ ”

48.分清圆锥曲线的定义

第一定义

椭圆,双曲线,抛物线

49.与双曲线有相同焦点的双曲线系为x

50.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0

51.会用定义求圆锥曲线的焦半径吗?

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

52.有关中点弦问题可考虑用“代点法”。

53.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

54.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出数的最值。

第五篇:高考数学“数形结合”解题思想方法、知识点及题型整理

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

高考数学总复习第三讲:数形结合

一、专题概述---什么是数形结合的思想

数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.

恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.

二、例题分析

1.善于观察图形,以揭示图形中蕴含的数量关系.

观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.

例1.函数的图象的一条对称轴方程是:

(A)(B)(C)(D)

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.,观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.

例2.问:圆个?

分析 由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两

上到直线的距离为的点共有几条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.

将圆方程变形为:心到定直线L的距离为,知其圆心是C(-1,-2),半径,由此判定平行于直线L且距离为,而圆的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)

启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.

3.切实把握“数”与“形”的对应关系,以图识性以性识图.

数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

成,相互转化.

例3.判定下列图中,哪个是表示函数图象.

分析 由=,可知函数

是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.

例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().

分析 由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).

例5.若复数z满足,且,则在复平面上对应点的图形面积是地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

多少?

分析 满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)

因此所求图形的面积为: 4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.

在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.

例6.已知C<0,试比较的大小.

分析 这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:

例7 解不等式

解法一(用代数方法求解),此不等式等价于:

解得

故原不等式的解集是

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

解法二(采用图象法)设即

对应的曲线是以是一直线.(如图)

为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.

借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.

例8 讨论方程的实数解的个数.

分析:作出函数的图象,保留其位于x轴上方的部分,将位于x轴下方的部分沿x轴翻折到x轴上方,便可得到函数交点个数即可. 的图象.(如图)再讨论它与直线y=a的 ∴当a<0时,解的个数是0;

当a=0时或a>4时,解的个数是2; 当0<a<4时,解的个数是4;

当a=4时,解的个数是3.

9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()

(A)1个(B)2个(C)3个(D)4个

分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

∴过(外,过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此)点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故

正确答案为(D)

例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()

(A)1个(B)2个(C)3个(D)4个

分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为

∴过(外,过(正确答案为(D))点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此)点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故例10.设点P(x,y)在曲线 解 曲线

上移动,求

是中心在(3,3),长轴为的最大值和最小值.,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)

消去y得

解得:

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

故的最大值为,最小值为

(其中a,b,c是正常数)的最小 例11.求函数值.

分析 采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图

设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则

其中的等号在P为线段AB与x轴的交点外,即 故y的最小值为时成立.

例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.

分析 在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决. 解,设R点对应的复数为: 则,P点对应的复数为

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

故即由点在椭圆上可知有:

整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.

三解题训练

1.求下列方程实根(1)的个数:

(2)

(3)

2.无论m取任何实数值,方程(A)1个(B)2个(C)3个(D)不确定 3.已知函数(A)b∈(-∞,0)(B)b∈(0,1)

(C)b∈(1,2)(D)b∈(2,+ ∞)的实根个数都是()的图象如右图则()

4.不等式的解集是()

(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式

一定有解,则a的取值范围是()

(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1] 6.解下列不等式:

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

(1)(2)

7.复平面内点A、B分别对应复数2,2+i,向量,则点C对应的复数是_______.

绕点A逆时针方向旋转至向量 8.若复数z满足|z|<2,则arg(z-4)的最大值为___________ 9.若复数z满足

10.函数定点的坐标是()(A)(–(C)(–2的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两,–,2)()(2,2)(B)(–)(D)(2,)(,–),2),–2)(–2 11.曲线与直线的交点个数是().

(A)0(B)1(C)2(D)3 12.曲线()

与直线

有两个交点,则实数k的取值是(A)13.已知集合(B)(C),(D)

满足,求实数b的取值范围.

14.函数的值域是()

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

(A)(B)

(C)(D)

四、练习答案

1.(1)2个(2)63个(3)2个

提示:分别作出两个函数的图象,看交点的个数.

2.B、提示:注意到方程右式,是过定点(,0)的直线系.

3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而3a<0,故选(A)4.A 5.A 6.(可以利用图象法求解)

(1)x≤-1或0

可知b=-地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!

12.C 13.

14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=kAB,而A点为圆x2+y2=1上的动点

地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625

下载高考数学知识点与题型归纳word格式文档
下载高考数学知识点与题型归纳.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考题型与考点

    高考解题方法一.现代文中的12种题型解析 1.含义题: (1)指代型:找出转化句(2)种差+属概念(3)句子意思+言外之意,言外之意=主旨+哲理+写作对象+情感 2.梳理全文信息: (1)传统题:(a)文本中的主要......

    2017年高考数学题型归纳完整版

    第一章 集合与常用逻辑用语 第一节 集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节 命题及其关系、充分条件与必要条件 题型1-4 四种命......

    高考数学知识点归纳[大全五篇]

    高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的想选择。下面小编给大家分享一些高考数学知识......

    数学高考知识点目录

    一、集合 列举法、描述法、韦恩图法、交集、并集、补集 简易逻辑: 命题:原命题、逆命题、否命题、逆否命题、全称量词、存在量词 二、函数概念和基本初等函数(指数函数、对数函......

    位置与坐标知识点总结与经典题型归纳

    位置与坐标知识点总结与经典题型归纳位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分......

    内蒙高考文科数学题型总结

    题型总结(文科数学) 选择题填空题 集合 复数 函数综合运用函数的基本性质 椭圆基本知识 程序框图 概率 三角函数 三视图 解析集合(难点) 三角函数图像(平移 对称问题) 向量 线性规......

    2021年高考数学知识点归纳总结(大全)

    2021年高考数学知识点归纳总结你知道吗?高中数学在学习的过程中,有很多知识点常考点。一起来看看2021年高考数学知识点归纳总结,欢迎查阅!高考数学的答题顺序是什么高考数学的......

    2010年高考数学知识点总结

    2010年高考数学知识点总结 1.平面向量 考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移. 考......