第一篇:二次函数的四种形式大全
一般地,自变量x和因变量y之间存在如下关系:
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
第二篇:二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:
二、教学过程
(一)提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)
(二)、观察;概括
(1)函数关系式(1)和(2)的自变量各有几个?
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点?
三、课堂练习
1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P25练习第1,2,3题。
四、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
五.堂堂清
下列函数中,哪些是二次函数?
(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1
第三篇:二次函数
?二次函数?测试
一.选择题〔36分〕
1、以下各式中,y是的二次函数的是
()
A.
B.
C.
D.
2.在同一坐标系中,作+2、-1、的图象,那么它们
()
A.都是关于轴对称
B.顶点都在原点
C.都是抛物线开口向上
D.以上都不对
3.假设二次函数的图象经过原点,那么的值必为
()
A.
0或2
B.
0
C.
D.
无法确定
4、点〔a,8〕在抛物线y=ax2上,那么a的值为〔
〕
A、±2
B、±2
C、2
D、-2
5.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是〔
〕
〔A〕y=3〔x+3〕2
〔B〕y=3〔x+2〕2+2
〔C〕y=3〔x-3〕2
〔D〕y=3〔x-3〕2+2
6.抛物线y=x2+6x+8与y轴交点坐标〔
〕
〔A〕〔0,8〕
〔B〕〔0,-8〕
〔C〕〔0,6〕
〔D〕〔-2,0〕〔-4,0〕
7、二次函数y=x2+4x+a的最大值是2,那么a的值是〔
〕
A、4
B、5
C、6
D、7
8.原点是抛物线的最高点,那么的范围是
()
A.
B.
C.
D.
9.抛物线那么图象与轴交点为
〔
〕
A.
二个交点
B.
一个交点
C.
无交点
D.
不能确定
10.不经过第三象限,那么的图象大致为
〔
〕
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
11.对于的图象以下表达正确的选项是
〔
〕
A
顶点作标为(-3,2)
B
对称轴为y=3
C
当时随增大而增大
D
当时随增大而减小
12、二次函数的图象如下图,那么以下结论中正确的选项是:〔
〕
A
a>0
b<0
c>0
B
a<0
b<0
c>0
C
a<0
b>0
c<0
D
a<0
b>0
c>0
二.填空题:〔每题4分,共24分〕
13.请写出一个开口向上,且对称轴为直线x
=3的二次函数解析式。
14.写出一个开口向下,顶点坐标是〔—2,3〕的函数解析式;
15、把二次函数y=-2x2+4x+3化成y=a〔x+h〕2+k的形式是________________________________.16.假设抛物线y=x2
+
4x的顶点是P,与X轴的两个交点是C、D两点,那么
△
PCD的面积是________________________.17.(-2,y1),(-1,y2),(3,y3)是二次函数y=x2-4x+m上的点,那么
y1,y2,y3从小到大用
“<〞排列是
.18.小敏在某次投篮中,球的运动路线是抛物线的一局部(如图),假设命中篮圈中心,那么他与篮底的距离是________________________.三.解答题(共60分)
19.〔6分〕假设抛物线经过点A〔,0〕和点B〔-2,〕,求点A、B的坐标。
20、(6分)二次函数的图像经过点〔0,-4〕,且当x
=
2,有最大值—2。求该二次函数的关系式:
21.〔6分〕抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。
25米x22、〔6分〕农民张大伯为了致富奔小康,大力开展家庭养殖业,他准备用40米长的木栏围一个矩形的鸡圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的羊鸡圈。请你设计使矩形鸡圈的面积最大?并计算最大面积。
23、二次函数y=-〔x-4〕2
+4
〔本大题总分值8分〕
1、先确定其图象的开口方向,对称轴和顶点坐标,再画出草图。
2、观察图象确定:X取何值时,①y=0,②y﹥0,⑶y﹤0。
24.〔8分〕某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,假设每千克涨价一元,日销售量将减少20千克。
〔1〕现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
〔2〕假设该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。
25.〔8分〕某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流〔在各个方向上〕沿形状相同的抛物线路径落下〔如下图〕。假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米。
〔1〕求这条抛物线的解析式;
〔2〕假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。
26.〔12分〕二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,〔1〕求A、B、C三点的坐标;
〔2〕如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;
〔3〕是否存在这样的点P,使得PO=PA,假设存在,求出点P的坐标;假设不存在,说明理由。
第四篇:求二次函数解析式的四种方法
新才教育--王慧敏--专题讲解(授课教师:解老师)
求二次函数解析式的四种基本方法
二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:
1、一般式:y=ax2+bx+c(a≠0)。
2、顶点式:y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h。
3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。4.对称点式: y=a(x-x1)(x-x2)+m(a≠0)
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:
1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
4.若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成: y=a(x-x1)(x-x2)+m(a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
探究问题,典例指津:
例
1、已知二次函数的图象经过点(1,5),(0,4)和(1,1).求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax2+bx+c(a≠0)。解:设这个二次函数的解析式为y=ax2+bx+c(a≠0)abc5a2依题意得:c4 解这个方程组得:b3
abc1c4∴这个二次函数的解析式为y=2x2+3x-4。
例
2、已知抛物线yaxbxc的顶点坐标为(4,1),与y轴交于点(0,3),求这条抛物线的解析式。
分析:此题给出抛物线yaxbxc的顶点坐标为(4,1),最好抛开题目给出的yax222bxc,重新设顶点式y=a(x-h)+k(a≠0),其中点(h,k)为顶点。
2解:依题意,设这个二次函数的解析式为y=a(x-4)2-1(a≠0)又抛物线与y轴交于点(0,3)。
咨询热线:2306086
新才教育--王慧敏--专题讲解(授课教师:解老师)
∴a(0-4)2-1=3 ∴a=∴这个二次函数的解析式为y=
1414
(x-4)2-1,即y=
14x2-2x+3。
例
3、如图,已知两点A(-8,0),(2,0),以AB为直径的半圆与y轴正半轴交于点C(0、4)。求经过A、B、C三点的抛物线的解析式。
分析:A、B两点实际上是抛物线与x轴的交点,所以可设交点式y=a(x-x1)(x-x)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。2
解:依题意,设这个二次函数的解析式为y=a(x+8)(x-2)
例
4、已知函数y=x2+kx-3(k>0),图象的顶点为C并与x轴相交于两点A、B且AB=4(1)求实数k的值;(2)若P为上述抛物线上的一个动点(除点C外),求使S△ABC=S△ABP成立的点P的坐标。
变式练习,创新发现
1、已知抛物线过A(-2,0)、B(1,0)、C(0,2)三点。求这条抛物线的解析式。)
2、已知抛物线的顶点坐标为(2,1),与y轴交于点(0,5),求这条抛物线的解析式。
yaxbxc2922、已知二次函数 的图象的顶点为(1,),且经过点(-2,0),求该二次函数的函数关系式。
3、已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x轴的一个交点是(-1,0),求这个二次函数的解析式。
24、已知二次函数yaxbxc的图象如图所示,则这个二次函数的关系式是________。
5、已知:抛物线在x轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式
26、已知二次函数y(m1)x2mx(3m2)(m≠1)的最大值是零,求此函数的解析式。
7.已知某抛物线是由抛物线y=x2-x-2经过平移而得到的,且该抛物线经过点A(1,1),B(2,4),求其函数关系式。
9、已知四点A(1,2),B(0,6),C(-2,20),D(-1,12),试问是否存在一个二次函数,使它的图象同时经过这四个点?如果存在,请求出它的关系式;如果不存在,说明理由。
5、咨询热线:2306086
第五篇:四种学习形式
四种学习形式
我院所设专业有四种学习形式可供学生选择。
一、全日制本科 全日制本科学制四年,实施办法与普通高校一致,周一到周五上课,周末和寒暑假休息,按照国家自考委员会考试大纲的规定进行授课。(除规定课程外,我院还开设了国学课程)
统招+自考同时读=双学历 双学位(专升本)
二、业余本科业余本科学制四年,主要利用晚上、周末、假期等业余时间进行学习(本人如有时间,也可参加全日制本科班的学习),或采用远程教育的方式。业余本科班与全日制本科班的课程设置一样,只是不安排文体类的课程,但计算其学分。
三、专升本2006年以来教育部不再举办重点院校专升本教育,黑龙江教育厅招考办规定在高职、高专在校生中开展专、本衔接自考教育方式。我院的专升本教育有两种形式:
(一)在校的统招专科生(高职学院学生),大一时在我院就可提前享受专升本教育,学制两年,采用业余的学习方式,即可考取本科毕业证和学士学位证。领取自考本科毕业证书和学位证书时,需出示专科毕业证。(比专本衔接要节省一到两年的时间)
(二)专科毕业生也可选择全日制专升本学习,学制两年,毕业时可考取自考本科毕业证和学士学位证。
四、双学历 双学位
在校本科生,可选择我院助学的哈尔滨工业大学、哈尔滨理工大学的热门专业,进行第二学历(学位)的学习。学制有两种:两年制和四年制,两种学制的课程设置有所不同。四年制按国家自学考试本科开考计划进行系统授课,两年制按国家自学考试独立本科段开考计划进行授课。