空间向量的夹角和距离公式1教案说明

时间:2019-05-14 19:05:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《空间向量的夹角和距离公式1教案说明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《空间向量的夹角和距离公式1教案说明》。

第一篇:空间向量的夹角和距离公式1教案说明

诚朴信雅 恒毅乐巧

教案说明

一、授课内容的数学本质与教学目标定位

本节课是人教版第九章第六节空间向量的坐标运算之夹角和距离公式的第一课时,它是在学生学习了空间向量的坐标表示,空间向量的数量积的基础上进一步学习的知识内容, 沟通了代数与几何的关系,体现了向量的工具性、应用性,渗透了转化、数形结合等数学思想.同时它也是数学建模中很典型的一堂课,是数学研究过程的一个缩影.这节课希望达到以下教学目标: 三维目标:

知识与技能:

⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题;

⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习

热情和求知欲,充分体现学生的主体地位;

⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.二、学习内容的基础以及今后有何用处

在人们生活的空间中存在着大量的图形,夹角和距离在现实生活中随处可见,同时它们又是立体几何中的重要问题, 由于高二的学生已具备一定的空间想象,但对把空间的问题转化为数学的问题的能力有所欠缺,而本节课的学习使学生经历对从生活中如何抽象出数学模型的过程,从而有助于培养学生分析问题、解决问题的能力.本节课是在已完成了“平面向量的数量积公式、夹角公式,空间向量的坐标表示,空间向量的数量积”等内容的教学以后进行的,它研究的是空间中夹角和距离公式,是空间向量在立体几何中的简单应用,是后面学习夹角和距离的基础,同时也肩负着学生用诚朴信雅 恒毅乐巧

向量法处理立体几何问题,把对空间图形的研究从“定性推理”转化为“定量计算”的任务, 因此本节课的教学内容起着承前启后的作用.这节课的教学,为向量在数学和物理上的综合运用奠定了基础.三、教学诊断分析

(1)由于高二的学生已具备一定的空间想象,但对把空间的问题转化为数学的问题的能力有所欠缺,因此在创设情境中安排了实际背景材料——奥运火炬在南昌的传递,对学生进行爱国主义教育,通过动画演示来引出新知,使学生直观的体验空间中两点间的距离和空间两条直线所成的角,目的有以下几点:①通过学生身边的实例,激发学生的学习兴趣,变枯燥的数学为有趣的数学;②使学生感悟到数学就在身边,提高“用数学”的意识;③使学生经历从现实生活中抽象出数学“模型”过程,培养“建模”意识.(2)由于本节课的重点是夹角和距离公式,而关键在于如何找坐标,学生容易了解,因此在例题的讲解上,充分的发挥学生的主观能动性,尽可能的由他们说出点或向量的坐标,激发学生参与的热情.(3)由于高二的学生具备一定的学习能力,但在探究问题的内部联系和内在发展上还有所欠缺,为此在例1的基础上设置变式训练,首先将课本中的中点坐标以及求夹角的例题设计到变式训练中给学生以示范,再安排学生在以上的基础上自己编题,目的:①始终以例1为主线,贯穿下来②起到培养学生的合作精神以及对掌握知识的相互补充作用,同时激发学生的学习积极性,让学生真正参与进来,真正的自主的学习.并通过投影仪充分展示学生的成果,在师生双边活动的过程中养成反思意识和提高有条理的表达能力,促进学生全面和谐地发展.将课本中求空间上到两点距离相等的点的轨迹问题设计到拓展提高当中,引发学生的兴趣,将整堂课推向高潮.(4)利用程序框图帮助总结求空间两点间的距离与两条直线所成角的步骤.(5)为适应不同水平的学生, 作业层次有所不同,给例1设计了一问留给学生思考,使得整堂课一根红线贯穿始终.四、本节课的教法特点以及预期效果分析 1.教学方法

为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发探究、讲练结合,诚朴信雅 恒毅乐巧

分组讨论等教学方法,着重于培养学生分析、解决问题的能力以及良好的学习品质. 2.教学中的预期效果分析

本节课我采用现代化的教学手段进行教学,运用已有的知识体系,创造性的使用教材,一根红线贯穿始终,使学生在自主学习与教师引导相结合的教学实践中,从“懂”到“会”到“悟”,体会钻研的意识,品尝成功的喜悦,从而使学生在积极活跃的思维过程中,数学能力和数学素养得到提高.

第二篇:向量与点到直线的距离公式的证明

向量与点到直线的距离公式的证明

安金龙

(苏州工业园区

这样处理,既避开了分类讨论,又体现了平面向量的工具性。当然,解析几何作为一个内涵丰富的数学分支,它和其它数学知识也会有密切的联系,下面笔者列举另外几种推导方法: 2用习题结论巧推点到直线距离公式

老教材代数课本(人教版,下册.必修)第15页习题十五第6题:

已知:

ad,求证:(bc

(a)

2b2)c(d当cad,b即c,a)bd

ab

时,有(a2b2()c2d2)(acbd)2.cd

上式实为柯西不等式的最简形式,很容易证明.故略去。下面给出点到直线的距离公式的最简推导。

已知点P(x0,y0)和直线l:AxByC0,则点到直线的距离即为点P到直线l上任意点所连结的线段中的最短线段.设M

x,y为直线l上任意一点,点P到直线l的距离为d,则:

(AxAx0)2(ByBy0)2

PMPM22

AB2

(ByBy0)222222(AxAx0)(AB)PM(AB)[] 22

AB

(AxAx0ByBy0)2=(Ax0By0

C)2

AB

dPMmin,当且仅当时等号成立。

xx0yy03用直线的参数方程推导点到直线距离公式

证明:当AB0时易验证公式成立,下证AB0时的情形:

(1)B>0时,过点P作直线L的垂线,垂足为H,则直线PH的标准参数方程为:

xxt0(t为参数)

yyt0



将直线PH的参数方程代入直线L的方程得:

A(x0t+B(y0tx,解之得点H

对应的参数t

C0

PHdPH

(2)当B时,直线PH的标准参数方程为:

xxt0(t为参数)

yyt0



可得PH

dPH

4构造引理推导点到直线距离公式

引理:如图1,直角三角形MPN中,MPN90,MPa,NPb,则点P到直线MN的距离d满足

a 图

1N

.222

dab

证明:由直角三角形的面积公式得:

MPNPMNd,22

11111即ab,所以222.d,即

dab2dab

下面就用引理证明点Px0,y0到直线l:AxByC0的距d

证明:当0时易证公式成立.当AB0时,如图2所示,过点

Px0,y0分别作平行于x轴,y轴的两条直线,分别交直线l:AxByC0

ByCAxC于点M(-,y0)、N(x0,-),则AB

B0yC

MP0,AAxC

NPy00.MPNP,在RTMPN中,B

点P到直线MN的距离d满足:

1111

1=22

222dMPNP(x00)(y

00)BA2B2,所以d =2(Ax0By0C)

参考文献:

[1] 全日制普通高级中学教科书(人教版)(试验修订本.必修)第二册(上)第55~56页.[2] 王国平.中学生数学.用习题结论巧推点线距离公式2001年1月上 [3] 张乃贵、段萍中学生数学.点到直线的距离公式的又一证明.2001年1月上

[4] 陈志新.点到直线距离公式的又一证法.中学生数学.2001年6月上

离为

第三篇:空间向量求空间角.教案

空间向量求空间角

教学知能目标:1.理解空间向量求解空间角的一般方法;

2.能用空间向量解决空间角问题。

教学情感目标:培养学生探究新知的精神,培养学生数形结合的能力,化归的能力。教学重点:理解空间向量求解空间角的一般方法,并能利用空间向量解决空间角问题。教学难点:线面角,面面角的化归。

一、复习引入: .在三棱锥PABC中,PAAB,ABAC,ACPA,则面ABC的法向量是什么?面PBC PAPBPC2,的法向量又怎么求? .空间向量的数量积运算公式是什么?

二、新课探究:

四棱柱ABCDA1B1C1D1的底面是的边长为1的正方形,侧棱垂直底面,AB1,AA14,E,F,G分

A1D1C1PACBZ别是CC1,AC,BB1的中点。

问题1:求异面直线B1F,D1E所成角的余弦值.探究:如何用空间向量求异面直线所成的角?

AB1EGDFBCY设l1与l2是两异面直线,a,b分别为l1、l2的方向向量,它们所成角为,l1、l2所成的角为,则θ与相等或

Xab互补,则coscos

ab

αab

问题2:求直线AC与平面AGF所成角的余弦值; 1

探究:如何用空间向量求直线与平面所成的角?

如图,设l为平面的斜线,lA,a,为l的方

Ban向向量,n为平面的法向量,它们所成角为θ,l与

平面所成的角为,则sincosanan

问题3:求二面角AAG1F的平面角的余弦值。

探究:如何用空间向量求二面角?

平面与相交于直线l,平面的法向量为n1,平面的法向量为n2,n1,n2 = ,则二面角l为或.设二面角的大小为,则coscosn1nn

21n2

φαACαn1An2φβlOB

三、巩固提高:

已知四棱锥SABCD的底面ABCD是边长为(1)当时SA2a时,求异面直线a的正方形,(2)当SA2a时AB和SC所成角的余弦值;求直线BD和平面SCD所成角的余弦值;(3)

ZSSA的值为多少时,二面角BSCD的大AB小为120? 当

四、小结:

ADYBXCab1.求异面直线所成的角时,一定要注意(0,90],从而有coscos

ab2.求直线与平面所成的角时,一定要注意它和a,n之间的关系,从而有ansincos

an3.求二面角时一定要注意它和m,n之间的关系,从而有

mncoscos,同时还要观察图形确定二面角的范围。

mn

五、作业:选修2-1,习题3.2A组1,2,4,6

第四篇:高中数学_谈“点到直线距离公式”的向量推导方法

谈“点到直线距离公式”的向量推导方法

贵州省黄平县旧州中学 杨胜万

在人教大纲版高二数学上册中,关于点到直线距离公式的推导方法,教材介绍了两种推导方法,并详细给出了利用直角三角形的面积公式推导得出点到直线的距离公式的具体过程。其实关于点到直线的距离公式的推导方法,除上述方法之外,还有其它很多方法,在这些方法中,向量法(利用平面向量的有关知识来推导的方法)是一种行之有效的推导方法。其推导思路简单明了、运算量也较小。下面笔者给出向量法推导点到直线的距离的具体过程,以供同行参考:

已知直线:

和点,为点

到直线的距离。现不妨设且,则直线的斜率为,其方向向量为,从而易知其法向量,又设点为直线上的任一点(如图所示),于是有:

由平面向量的有关知识,可得:

显然,当或

时,上述公式仍成立。

上述推导方法利用了向量的数量积知识来进行推导出了点到直线的距离公式,这是一种比较重要有数学思想方法。我们还可将这种思想方法进一步推广到在立体几何中,如何利用空间向量解决求点到平面的距离问题。

第五篇:空间向量方法解立体几何教案

空间向量方法解立体几何

【空间向量基本定理】

例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分

数x、y、z的值。成定比2,N分PD成定比1,求满足的实

分析;结合图形,从向量

用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。

如图所示,取PC的中点E,连接NE,则

点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。

【利用空间向量证明平行、垂直问题】

例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。

(1)证明:PA//平面EDB;

(2)证明:PB⊥平面EFD;

(3)求二面角C—PB—D的大小。

点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.

(2)证明线面平行的方法:

①证明直线的方向向量与平面的法向量垂直;

②证明能够在平面内找到一个向量与已知直线的方向向量共线;

③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.

(3)证明面面平行的方法:

①转化为线线平行、线面平行处理;

②证明这两个平面的法向量是共线向量.

(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.

(5)证明线面垂直的方法:

①证明直线的方向向量与平面的法向量是共线向量;

②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:

①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】

例3.正方形ABCD—中,E、F分别是

(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角

求得,即。

(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或

(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。

【用空间向量求距离】

例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:

(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线

本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。

(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。

(2)线面角的求法:设n是平面

向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向

所成角为则sin

(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异

②设分别是二面角的两个平面的法向量,则

就是二面角的平面角或其补角。

(4)异面直线间距离的求法:向量,又C、D分别是

是两条异面直线,n是。的公垂线段AB的方向

上的任意两点,则

(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到

(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。

练习:

12

1.若等边ABC的边长

为,平面内一点M满足CMCBCA,则

MAMB_________

2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)

如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=

AD 2

(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。

4.(本题满分15分)如图,平面PAC平面ABC,ABC

是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.

(I)设G是OC的中点,证明:FG//平面BOE;

(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.

5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;

(Ⅱ)当PD且E为PB的中点时,求AE与

平面PDB所成的角的大小.

下载空间向量的夹角和距离公式1教案说明word格式文档
下载空间向量的夹角和距离公式1教案说明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    §1空间向量的坐标运算[五篇范文]

    江苏省宿迁中学2011届高三第一轮复习导学案编写:栗旭审校:李愚§1空间向量的坐标表示及基本定理二、教学目标1.了解空间向量的基本概念;2.掌握空间向量的运算及性质.三、重点:空......

    3.1空间向量及其运算 教学设计 教案

    教学准备 1. 教学目标 (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值......

    3.1空间向量及其运算 教学设计 教案

    教学准备 1. 教学目标 1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。 2、......

    《空间向量》专题1 基本概念 学案(Word版含答案)

    《空间向量》专题1-1基本概念(4套,7页,含答案)知识点:空间向量的概念:在空间中具有大小和方向的量叫做空间向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长......

    平方差公式教案1

    《平方差公式》的课堂设计方案 【课标解读】 课程标准要求学生能从特殊的多项式乘以多项式的运算中发现规律,并归纳出公式,然后能利用公式进行计算并解决相关的数学问题。最后......

    2.4.2平面向量数量积的坐标表示、模、夹角教案[5篇范文]

    2.4.2平面向量数量积的坐标表示、模、夹角 教学目标: 1、 掌握平面向量数量积的坐标表示方法 2、 掌握向量垂直的坐标表示的条件,及平面内两点间的距离公式. 3、 能用平面向量......

    示范教案(2.4.2平面向量数量积的坐标表示、模、夹角)

    2.4.2 平面向量数量积的坐标表示、模、夹角 整体设计 教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向......

    完全平方公式(教案1)

    《完全平方公式》教案 万江三中 何建明 课题:人教版八年级上册15.2.2《完全平方公式》 教学目标: 1、知道完全平方公式与多项式乘法的关系,理解完全平方公式的意义。 2、经历......