NTFS格式整数分区的公式与参数(精选5篇)

时间:2019-05-14 20:20:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《NTFS格式整数分区的公式与参数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《NTFS格式整数分区的公式与参数》。

第一篇:NTFS格式整数分区的公式与参数

1G=1028M 2G=2056M 3G=3075M 4G=4103M 5G=5123M 6G=6150M 7G=7170M 8G=8198M 9G=9217M 10G=1024M 11G=11265M 12G=12292M 13G=13320M 14G=14340M 15G=15367M 16G=16387M 17G=17415M 18G=18434M 19G=19462M 20G=20482M 21G=21509M 22G=22529M 23G=23557M 24G=24584M

25G=25604M 26G=26623M 27G=27651M 28G=28679M 29G=29699M 30G=30726M

35G=35841M 40G=40963M 45G=46085M 50G=51508M 55G=56322M 60G=61444M 65G=66567M 70G=71603M 75G=76803M 80G=81926M 85G=87048M 90G=92162M 95G=97285M 100G=10240M 105G=107521M 110G=112644M 115G=117766M

120G=12888M 125G=128003M 130G=133125M 135G=138247M 140G=143362M 145G=148484M 150G=153606M 155G=158721M 160G=163843M 165G=168965M 170G=174088M 175G=179202M 180G=184324M 185G=189447M 190G=194561M 195G=199683M 200G=204806M 205G=209928M 210G=215042M 215G=220165M 220G=225287M 225G=230401M 230G=235524M 235G=240646M

240G=245768M 245G=250883M 250G=256005M 255G=261127M 260G=266242M 265G=271364M 270G=276486M 275G=281601M 280G=286723M 285G=291845M 290G=296968M 295G=302082M 300G=307204M

一些个性数字 168G=172040M 88G=90115M 66G=67586M 666G=681986M 360G=368648M 365G=373763M 888G=909320M

一切都结束了................

第二篇:NTFS格式整数分区的公式与参数

分区分成整数,其实这是一个很无聊的问题。很多时候大家分区完成以后总是显示X.99G,这样对于有洁癖的人或者是完美主义者来说是很不爽的。通常的的算法说是 M=(G-1)*4+1024*G得到填写多少M。实际上这个算法并不准确。下面是使用这种算法分区以后NTFS格式的显示。

今日一个朋友告诉我一个比较准确的算法: 硬盘一般有255磁头,63扇区,故每柱面大小为: 512byte×255×63=8225280bytes =7.84423828125 M 如果要分4G,那么要4x1024M=4096M 需要柱面数为4096÷7.84423828125=522.166 取整数既为523个柱面

应分M数为523x7.84423828125=4102.53662109375M 不管小数点后面几位都进1,也就是4103M,windows就认为是4.00G了。这个方法NTFS和FAT32通用。

于是我马上拿新硬盘进行测试,是不是很整齐呢。

听说一位仁兄为了验证上面的算法的准确性格式坏硬盘一个。大家也可以试试。顺便送一个刚才写了的小脚本给大家计算整数分区。(IE only)运行代码框

G ”+a."+Math.ceil(Math.ceil(a.value*1

精确的算法如下:

硬盘一般有255磁头,63扇区,故每柱面大小为:

512byte x 255 x 63=8225280bytes =7.84423828125 M 如果要分4G,那么要4x1024M=4096M 需要柱面数为4096÷7.84423828125=522.166 取整数既为523个柱面

应分M数为523x7.84423828125=4102.53662109375M 不管小数点后面几位都进1,也就是4103M,windows就认为是4.00G了。这个方法NTFS和FAT32通用。

这样太复杂了,还要一个个去算。我已经都算好了,相信大多数人可以找到自己想要的答案!1G=1028M 2G=2056M 3G=3075M 4G=4103M 5G=5123M 6G=6150M 7G=7170M 8G=8198M 9G=9217M 10G=1024M 11G=11265M 12G=12292M 13G=13320M 14G=14340M 15G=15367M 16G=16387M 17G=17415M

18G=18434M 19G=19462M 20G=20482M 21G=21509M 22G=22529M 23G=23557M 24G=24584M 25G=25604M 26G=26623M 27G=27651M 28G=28679M 29G=29699M 30G=30726M

35G=35841M 40G=40963M 45G=46085M 50G=51508M 55G=56322M 60G=61444M 65G=66567M 70G=71603M 75G=76803M 80G=81926M

85G=87048M 90G=92162M 95G=97285M 100G=102406M 105G=107521M 110G=112644M 115G=117766M 120G=12888M 125G=128003M 130G=133125M 135G=138247M 140G=143362M 145G=148484M 150G=153606M 155G=158721M 160G=163843M 165G=168965M 170G=174088M 175G=179202M 180G=184324M 185G=189447M 190G=194561M 195G=199683M 200G=204806M

205G=209928M 210G=215042M 215G=220165M 220G=225287M 225G=230401M 230G=235524M 235G=240646M 240G=245768M 245G=250883M 250G=256005M 255G=261127M 260G=266242M 265G=271364M 270G=276486M 275G=281601M 280G=286723M 285G=291845M 290G=296968M 295G=302082M 300G=307204M

一些个性数字 168G=172040M

88G=90115M 66G=67586M 666G=681986M 360G=368648M 365G=373763M 888G=909320M

一切都结束了................

第三篇:乳制品喷码机简介与参数

乳制品喷码机简介与参数

食品饮料是应用喷码机最多行业之一,其中乳制品行业几乎都有在应用喷码机,为乳制品外包装标识喷码。乳制品喷码机可在不同形状和规格的乳制品产品包装上喷码一维码、二维码、生产日期,批号,有效期日期、LOGO,厂商信息等各种信息。在多种乳品的外包装都可进行有效喷码,比如利乐包,PET塑胶瓶,玻璃瓶,复合膜,马口铁等,液体和固体产品包装一样可以清晰喷码。A-98乳制品喷码机喷码速度快,能够满足快速流水线生产;高效,24小时不间断喷码生产。

乳制品企业标识产品基于三方面原因。一,国家有关法规的要求,国家标准,食品饮料产品外包装上注明生产日期,有效期,批号等信息,确保安全食品到消费者手中。二,对生产管理和追溯需求,产品标识是厂商生产管理中很重要环节,可根据班次,编码、批号,生产日期或条码,有效的进行产品跟踪,具有良好的可追溯性,完善生产和物流的管理和控制,以反防窜货要求。三,品牌营销要求,在市场营销中,清晰的标识可成为消费者认同品牌的方式之一,同时也是企业对社会的一种责任承诺和安全使用的信心标志。

乳制品喷码机A-98资料参数

最大喷印行数 5行(5*5)

操作界面 所见即所得的编辑方式,喷印时可预览文件,触摸式覆膜按键,自带图文编辑功能

字符点阵 5*55*76*98*1111*1617*2422*32

喷印高度 1-15mm

喷印宽度 字符可加宽1-8倍

喷头到产品距离 最大20mm,最佳打印距离12mm

最大喷印速度 125米/分钟(5*7)

信息编辑 32点阵内任意混编、移动、旋转、组合、多种字体选择、整体间隔加粗

喷印方向 360°可调

喷印内容 中文,英文,图片,自动喷印日期、时间、批号、流水号等 中文字库 内置国标一、二级汉字库

条码喷印 Code128、code39、ENA13码等(可选)

数据存储 100条信息,100个图片

输入法 拼音输入法、区位输入法

喷头喉管长度 2.5m

使用温度 0-45℃

使用湿度 相对湿度20%-80%

通讯接口 光电、同步器、报警接口、RS232、USB

重量 毛重:30kg;净重:25kg

电气要求 220V±10% 50HZ 200VA

机器尺寸 480*230*600mm

第四篇:党校建设功能分区与面积

附件2

党校建设功能要求及建筑面积

一、教学楼:5层 约2290㎡(不含交通空间面积)

1、阶梯教室: 1间400㎡(容纳200人)备注:阶梯教室兼作中央党校远程教学中心

2、大教室: 1间300㎡(容纳150人)3、60人教室 6间×100㎡=600㎡ 4、80人教室 2间×150㎡=300㎡ 5、100人教室 1间×160㎡=160㎡

6、情景模拟室 1间×180㎡=180㎡

7、教师休息室 5间×20㎡=100㎡ 备注:每层一间

8、洗手间 5层×2间×20㎡=200㎡

备注:洗手间每间面积约20㎡,具体由设计师根据相关规范确定。每层2个,分男女。

9、饮水间 5层×10㎡=50㎡

备注:饮水间每间面积约10㎡,具体由设计师根据相关规范确定。每层1个。

10、其它(含2.5 M宽走廊、楼梯、消防设施等)

要求:各教室均符合多媒体教学、远程教学等现代教学需要;教室设计时应充分考虑扩音音响设备的安装;阶梯教室场所人均面积较为宽松,成斜面台阶式;大教室要适当考虑计划外班次的特殊需求,桌椅可变更和自由组合;教师休息室应当考虑兼作一般性接待使用; 教室考虑自然通风和采光;走廊、楼梯等通道要有利于人员快速疏散。

二、办公楼:5层 约2550㎡(不含交通空间面积)

1、主要领导办公室 2间×70㎡=140㎡ 备注:含接待室、休息室、洗手间

2、其他领导办公室 8间×50㎡=400㎡ 备注:含休息室、洗手间

3、科室负责人办公室 20间×20㎡=400㎡

备注:科室负责人办公室为每人一间

4、普通办公室 20间×30㎡=600㎡

备注:普通办公室为2-4人左右

5、校委会议室 1个80㎡

6、大会议室 1个150㎡(容纳100人)

7、小会议室 1个80㎡

8、接待室 1个80㎡

9、档案室 3个×50㎡=150㎡

10、打字室或文印中心 1个×30㎡=30㎡

11、洗手间 5层×2间×20㎡=200㎡

备注:洗手间每间面积约20㎡,具体由设计师根据相关规范确定。每层2个,分男女。

12、大堂或大厅 200㎡

13、值班室 1个×40㎡=40㎡

备注:按照小套间形式设计

14、其他(含楼道、走廊、电梯、消防设施等)

要求:各办公室要符合电子办公要求,楼宇智能化管理;领导办公室设小型接待套间;会议室体现多样化、个性化;档案室充分考虑承重力问题;走廊、楼梯等通道要有利于人员快速疏散。

三、学术报告中心:约1500㎡

1、学术报告中心: 1500㎡(容纳500人)备注:含主席台、贵宾休息室、配电室、音响灯光控制室、化妆间、洗手间、饮水间、消防设施等。

要求:报告厅场所人均面积较为宽松,每排间的间距要充分考 虑培训对象的特殊性,适当加大间距;主席台应兼具有小型舞台功能能够布置50座;贵宾休息室要充分考虑高规格领导接待和休息使用;吸音效果良好。

四、学员楼:5层 共328床位,约6845㎡(不含交通空间面积)

1、标间:

2、单间:

3、套间:

4、会议室兼讨论室1:

120个×25㎡=3000㎡ 80个×25㎡=2000㎡ 8个×50㎡=400㎡ 5个×80㎡=400㎡

5、会议室兼讨论室2: 5个×50㎡=250㎡

6、洗衣房 1间×60㎡=60㎡

7、大堂、服务总台 1个×200㎡=200㎡

8、服务员房间、物品调配室 10间×30㎡=300㎡

9、管理人员办公室 1间×35㎡=35㎡

10、公共洗手间 5层×2间×20㎡=200㎡ 备注:洗手间每间面积约20㎡,具体由设计师根据相关规范确定。每层2个,分男女。

11、其它(含2.5M宽走廊、双电梯、消防设施等)

要求:学员楼按照三星级标准设计;单人间可临时拆分为双人间;会议室兼讨论室要兼顾主体班和计划外班的双重需求,建议每楼层均匀分布;充分考虑学员长期住宿,应设计晾晒衣物的设施;走廊、楼梯等通道要有利于人员快速疏散。

五、食堂:3层 容纳500人 约1920㎡(不含交通空间面积)

1、自助餐厅 500㎡(容纳250人)

2、中式餐厅 500㎡(容纳200人)

3、大包厢 1间×80㎡=80㎡

4、小包厢 8间×40㎡=320㎡

5、作业场地 400㎡

备注:含配菜间、洗菜间、操作间、蒸饭间、白案间、消毒间、仓库、更衣室、休息室

6、洗手间 3层×2间×20㎡=120㎡

备注:洗手间每间面积约20㎡,具体由设计师根据相关规范确定。每层2个,分男女。

7、楼梯走廊、升降间、消防设施等

要求:学员食堂仿酒店式建造;中式餐厅采用圆桌分布,兼作大型宴会厅使用;包厢均要设计卫生间;操作间较为宽敞,生、冷、熟食间,面点制作间等齐全。

六、图书馆:3层 约1590 ㎡(不含交通空间面积)

1、期刊阅览室 1间×180㎡=180㎡

备注:内含一间柜台式工作室,面积约10㎡;一间小库房,面积约20㎡。

2、电子阅览室 1间×150㎡=150㎡

3、普通书库 2间×245㎡=490㎡

备注:普通书库内设一个20㎡的借阅柜台和一间25㎡的采编室;内设休闲雅座供阅读使用,休闲雅座面积由设计师确定。

4、工具书库 1间×100㎡=100㎡ 备注:内含内刊库和资料库,设一间20㎡的工作室。

5、过刊库 1间×150㎡=150㎡

6、校史展览馆 1间×150㎡=150㎡

7、信息中心控制室 1间×120㎡=120㎡

8、课件网站制作室 1间×50㎡=50㎡

9、馆长办公室 1间×20㎡=20㎡

10、馆员办公室 1间×30㎡=30㎡

11、洗手间 3层×2间×20㎡=120㎡

备注:洗手间每间面积约20㎡,具体由设计师根据相关规范确定。每层2个,分男女。

12、饮水间 3层×10㎡=30㎡

备注:饮水间每间面积约10㎡,具体由设计师根据相关规范确 定。

13、楼梯走廊、消防设施等

要求:图书馆充分考虑承重力问题;书库、阅览室均为大跨度、大开间;普通书库要设置休闲雅座供阅读使用;图书信息数字化程度较高,功能齐全。

七、文体楼: 约1800㎡(不含交通空间面积)

1、多功能球场 1个×700㎡=700㎡ 备注:室内篮球场兼羽毛球场、排球场

2、多功能活动厅 1个×300㎡=300㎡

3、乒乓球室(容纳4张乒乓球桌)、健身房、文化娱乐室(3-4间)约400㎡

4、老干部活动中心 约100㎡

5、饮水间、洗手间、更衣室 约300㎡

备注:洗手间每间面积约20㎡,饮水间每间面积约10㎡,具体由设计师根据相关规范确定。

6、楼梯走廊、消防设施等

要求:多功能球场可同时兼备室内篮球场、羽毛球场、排球场;多功能活动厅按照大型卡拉OK间设计。

八、聘用合同工周转房 约400㎡(不含交通空间面积)1、20间×20㎡/间=400㎡

九、校大门值班室 4间×20㎡=80㎡

备注:分别设计为门卫值班室、警务监控室、接待室、收发室。

十、地下停车场 约1000㎡ 备注:含物资仓库约200㎡、配电房约100㎡。

十一、室外

1、室外设施:网球场1个、篮球场2个。注:

地上总建筑面积不超过26000㎡,该指标不得突破,以上提供的各单体建筑面积为参考值,设计师应根据地块特点、国家的有关规定、类似项目设计经验灵活控制。

第五篇:概率论与数理统计公式整理

第1章

随机事件及其概率

(1)排列组合公式

从m个人中挑出n个人进行排列的可能数。

从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理

加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n

种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n

种方法来完成,则这件事可由m×n

种方法来完成。

(3)一些常见排列

重复排列和非重复排列(有序)

对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件

如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件

在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用来表示。

基本事件的全体,称为试验的样本空间,用表示。

一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。

为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算

①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):

如果同时有,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:AB,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。

A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C

A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C)

(A∪B)∩C=(AC)∪(BC)

德摩根率:,(7)概率的公理化定义

设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:

0≤P(A)≤1,2°

P(Ω)

=1

对于两两互不相容的事件,…有

常称为可列(完全)可加性。

则称P(A)为事件的概率。

(8)古典概型

1°,2°。

设任一事件,它是由组成的,则有

P(A)=

=

(9)几何概型

若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A。其中L为几何度量(长度、面积、体积)。

(10)加法公式

P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式

P(A-B)=P(A)-P(AB)

当BA时,P(A-B)=P(A)-P(B)

当A=Ω时,P()=1-

P(B)

(12)条件概率

定义

设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1P(/A)=1-P(B/A)

(13)乘法公式

乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有

…………。

(14)独立性

①两个事件的独立性

设事件、满足,则称事件、是相互独立的。

若事件、相互独立,且,则有

若事件、相互独立,则可得到与、与、与也都相互独立。

必然事件和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性

设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式

设事件满足

1°两两互不相容,2°,则有。

(16)贝叶斯公式

设事件,…,及满足

1°,…,两两互不相容,>0,1,2,…,2°,则,i=1,2,…n。

此公式即为贝叶斯公式。,(,…,),通常叫先验概率。,(,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型

我们作了次试验,且满足

u

每次试验只有两种可能结果,发生或不发生;

u

次试验是重复进行的,即发生的概率每次均一样;

u

每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。

这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率。

第二章

随机变量及其分布

(1)离散型随机变量的分布律

设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:。

显然分布律应满足下列条件:

(1),(2)。

(2)连续型随机变量的分布密度

设是随机变量的分布函数,若存在非负函数,对任意实数,有,则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:

1°。

2°。

(3)离散与连续型随机变量的关系

积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函数

设为随机变量,是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间的概率。分布函数表示随机变量落入区间(–

∞,x]内的概率。

分布函数具有如下性质:

1°;

是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量。

(5)八大分布

0-1分布

P(X=1)=p,P(X=0)=q

二项分布

在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。,其中,则称随机变量服从参数为,的二项分布。记为。

当时,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松分布

设随机变量的分布律为,,则称随机变量服从参数为的泊松分布,记为或者P()。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几何分布

随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何分布,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀分布

设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

a≤x≤b

0,xb。

当a≤x1

指数分布,0,其中,则称随机变量X服从参数为的指数分布。

X的分布函数为,x<0。

记住积分公式:

正态分布

设随机变量的密度函数为,其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。

具有如下性质:

1°的图形是关于对称的;

当时,为最大值;

若,则的分布函数为

参数、时的正态分布称为标准正态分布,记为,其密度函数记为,分布函数为。

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=。

如果~,则~。

(6)分位数

下分位表:;

上分位表:。

(7)函数分布

离散型

已知的分布列为,的分布列(互不相等)如下:,若有某些相等,则应将对应的相加作为的概率。

连续型

先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

第三章

二维随机变量及其分布

(1)联合分布

离散型

如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机量。

设=(X,Y)的所有可能取值为,且事件{=}的概率为pij,称

为=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:

Y

X

y1

y2

yj

x1

p11

p12

p1j

x2

p21

p22

p2j

xi

pi1

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型

对于二维随机向量,如果存在非负函数,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a

则称为连续型随机向量;并称f(x,y)为=(X,Y)的分布密度或称为X和Y的联合分布密度。

分布密度f(x,y)具有下面两个性质:

(1)

f(x,y)≥0;

(2)

(2)二维随机变量的本质

(3)联合分布函数

设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:

(1)

(2)F(x,y)分别对x和y是非减的,即

当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)

≥F(x,y1);

(3)F(x,y)分别对x和y是右连续的,即

(4)

(5)对于

.(4)离散型与连续型的关系

(5)边缘分布

离散型

X的边缘分布为;

Y的边缘分布为。

连续型

X的边缘分布密度为

Y的边缘分布密度为

(6)条件分布

离散型

在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为

连续型

在已知Y=y的条件下,X的条件分布密度为;

在已知X=x的条件下,Y的条件分布密度为

(7)独立性

一般型

F(X,Y)=FX(x)FY(y)

离散型

有零不独立

连续型

f(x,y)=fX(x)fY(y)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布

=0

随机变量的函数

若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:

h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。

特例:若X与Y独立,则:h(X)和g(Y)独立。

例如:若X与Y独立,则:3X+1和5Y-2独立。

(8)二维均匀分布

设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。

例如图3.1、图3.2和图3.3。

y

D1

O

x

图3.1

y

D2

O

x

图3.2

y

D3

d

c

O

a

b

x

图3.3

(9)二维正态分布

设随机向量(X,Y)的分布密度函数为

其中是5个参数,则称(X,Y)服从二维正态分布,记为(X,Y)~N(由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即X~N(但是若X~N(,(X,Y)未必是二维正态分布。

(10)函数分布

Z=X+Y

根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布()。

n个相互独立的正态分布的线性组合,仍服从正态分布。,Z=max,min(X1,X2,…Xn)

若相互独立,其分布函数分别为,则Z=max,min(X1,X2,…Xn)的分布函数为:

分布

设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和的分布密度为

我们称随机变量W服从自由度为n的分布,记为W~,其中

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。

分布满足可加性:设

t分布

设X,Y是两个相互独立的随机变量,且

可以证明函数的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布

设,且X与Y独立,可以证明的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1,n2).第四章

随机变量的数字特征

(1)一维随机变量的数字特征

离散型

连续型

期望

期望就是平均值

设X是离散型随机变量,其分布律为P()=pk,k=1,2,…,n,(要求绝对收敛)

设X是连续型随机变量,其概率密度为f(x),(要求绝对收敛)

函数的期望

Y=g(X)

Y=g(X)

方差

D(X)=E[X-E(X)]2,标准差,矩

①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)=,k=1,2,….②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为,即

=,k=1,2,….①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)=

k=1,2,….②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为,即

=

k=1,2,….切比雪夫不等式

设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计,它在理论上有重要意义。

(2)期望的性质

(1)

E(C)=C

(2)

E(CX)=CE(X)

(3)

E(X+Y)=E(X)+E(Y),(4)

E(XY)=E(X)

E(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

(3)方差的性质

(1)

D(C)=0;E(C)=C

(2)

D(aX)=a2D(X);

E(aX)=aE(X)

(3)

D(aX+b)=

a2D(X);

E(aX+b)=aE(X)+b

(4)

D(X)=E(X2)-E2(X)

(5)

D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y)

±2E[(X-E(X))(Y-E(Y))],无条件成立。

而E(X+Y)=E(X)+E(Y),无条件成立。

(4)常见分布的期望和方差

期望

方差

0-1分布

p

二项分布

np

泊松分布

几何分布

超几何分布

均匀分布

指数分布

正态分布

n

2n

t分布

0

(n>2)

(5)二维随机变量的数字特征

期望

函数的期望

方差

协方差

对于随机变量X与Y,称它们的二阶混合中心矩为X与Y的协方差或相关矩,记为,即

与记号相对应,X与Y的方差D(X)与D(Y)也可分别记为与。

相关系数

对于随机变量X与Y,如果D(X)>0,D(Y)>0,则称

为X与Y的相关系数,记作(有时可简记为)。

||≤1,当||=1时,称X与Y完全相关:

完全相关

而当时,称X与Y不相关。

以下五个命题是等价的:

①;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).协方差矩阵

混合矩

对于随机变量X与Y,如果有存在,则称之为X与Y的k+l阶混合原点矩,记为;k+l阶混合中心矩记为:

(6)协方差的性质

(i)

cov

(X,Y)=cov

(Y,X);

(ii)

cov(aX,bY)=ab

cov(X,Y);

(iii)

cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y);

(iv)

cov(X,Y)=E(XY)-E(X)E(Y).(7)独立和不相关

(i)

若随机变量X与Y相互独立,则;反之不真。

(ii)

若(X,Y)~N(),则X与Y相互独立的充要条件是X和Y不相关。

第五章

大数定律和中心极限定理

(1)大数定律

切比雪夫大数定律

设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律

设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律

设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理

列维-林德伯格定理

设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-拉普拉斯定理

设随机变量为具有参数n,p(0

(3)二项定理

若当,则

超几何分布的极限分布为二项分布。

(4)泊松定理

若当,则

其中k=0,1,2,…,n,…。

二项分布的极限分布为泊松分布。

第六章

样本及抽样分布

(1)数理统计的基本概念

总体

在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。

个体

总体中的每一个单元称为样品(或个体)。

样本

我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,表示n个随机变量(样本);在具体的一次抽取之后,表示n个具体的数值(样本值)。我们称之为样本的两重性。

样本函数和统计量

设为总体的一个样本,称

()

为样本函数,其中为一个连续函数。如果中不包含任何未知参数,则称()为一个统计量。

常见统计量及其性质

样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩,,,其中,为二阶中心矩。

(2)正态总体下的四大分布

正态分布

设为来自正态总体的一个样本,则样本函数

t分布

设为来自正态总体的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。

设为来自正态总体的一个样本,则样本函数

其中表示自由度为n-1的分布。

F分布

设为来自正态总体的一个样本,而为来自正态总体的一个样本,则样本函数

其中

表示第一自由度为,第二自由度为的F分布。

(3)正态总体下分布的性质

与独立。

第七章

参数估计

(1)点估计

矩估计

设总体X的分布中包含有未知数,则其分布函数可以表成它的k阶原点矩中也包含了未知参数,即。又设为总体X的n个样本值,其样本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数即为参数()的矩估计量。

若为的矩估计,为连续函数,则为的矩估计。

极大似然估计

当总体X为连续型随机变量时,设其分布密度为,其中为未知参数。又设为总体的一个样本,称

为样本的似然函数,简记为Ln.当总体X为离型随机变量时,设其分布律为,则称

为样本的似然函数。

若似然函数在处取到最大值,则称分别为的最大似然估计值,相应的统计量称为最大似然估计量。

若为的极大似然估计,为单调函数,则为的极大似然估计。

(2)估计量的评选标准

无偏性

设为未知参数的估计量。若E

()=,则称

为的无偏估计量。

E()=E(X),E(S2)=D(X)

有效性

设和是未知参数的两个无偏估计量。若,则称有效。

一致性

设是的一串估计量,如果对于任意的正数,都有

则称为的一致估计量(或相合估计量)。

若为的无偏估计,且则为的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。

(3)区间估计

置信区间和置信度

设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个统计量与,使得区间以的概率包含这个待估参数,即

那么称区间为的置信区间,为该区间的置信度(或置信水平)。

单正态总体的期望和方差的区间估计

设为总体的一个样本,在置信度为下,我们来确定的置信区间。具体步骤如下:

(i)选择样本函数;

(ii)由置信度,查表找分位数;

(iii)导出置信区间。

已知方差,估计均值

(i)选择样本函数

(ii)

查表找分位数

(iii)导出置信区间

未知方差,估计均值

(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计

(i)选择样本函数

(ii)查表找分位数

(iii)导出的置信区间

第八章

假设检验

基本思想

假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。

这里所说的小概率事件就是事件,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。

基本步骤

假设检验的基本步骤如下:

(i)

提出零假设H0;

(ii)

选择统计量K;

(iii)

对于检验水平α查表找分位数λ;

(iv)

由样本值计算统计量之值K;

将进行比较,作出判断:当时否定H0,否则认为H0相容。

两类错误

第一类错误

当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记为犯此类错误的概率,即

P{否定H0|H0为真}=;

此处的α恰好为检验水平。

第二类错误

当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记为犯此类错误的概率,即

P{接受H0|H1为真}=。

两类错误的关系

人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时,变小,则变大;相反地,变小,则变大。取定要想使变小,则必须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件

零假设

统计量

对应样本

函数分布

否定域

已知

N(0,1)

未知

未知

下载NTFS格式整数分区的公式与参数(精选5篇)word格式文档
下载NTFS格式整数分区的公式与参数(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《分数与整数相乘》教案

    《分数与整数相乘》教案 1.复习导入 (1)师:同学们,你能快速说出以下几道算式的答案吗? ***+++= 9992222++++= 999922222+++„„+(共17个相加)= 99999++=(2)师引导学生说说如何算的。 (3)师相机总......

    药剂科分区性原则与布局简介

    怀远县龙亢农场医院 药剂科分区性原则与布局简介 药剂科的分区以病人为中心,坚持统一管理及整体性原则,确保其功能与任务的落实。药剂科设药剂科办公室、库房和药品会计办公室......

    银行营业厅布局与功能分区研究

    前言:几乎所有的银行产品和服务最终都要通过营业厅来实现价值的转换。银行营业厅必须要重视每一个与客户发生关系的路径与触点,因为任何一个与客户接触的触点都是改善客户关系......

    钻井液与录井工程参数

    钻井液与录井工程参数 摘要 :钻井液参数包括钻井液的出入口密度、出入口温度、出入口电导率、流量、钻井液体积等。钻井液参数的变化通常直接反映井下地层流体的活跃情况及井......

    釉面砖的参数与标准(5篇可选)

    釉面砖的参数与标准 釉面砖就是砖的表面经过烧釉处理的砖。就是表面用釉料一起烧制而成的,主体又分陶土和瓷土两种,陶土烧制出来的背面呈红色,瓷土烧制的背面呈灰白色。釉面砖......

    坐标系与参数方程(知识总结)

    坐标系与参数方程专题坐标系与参数方程 【要点知识】 一、坐标系 1.平面直角坐标系中的伸缩变换 xx(0)设点P(x,y)是平面直角坐标系xOy中的任意一点,在变换:的作用yy(0)下,点P(......

    极坐标与参数方程题型和方法归纳

    极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:1、已知直线的参数方程为(为......

    高中数学-公式-排列组合与概率

    排列组合、二项式定理 1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事......