人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法

时间:2019-05-14 21:42:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法》。

第一篇:人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法

高中数学选修2-2编号02-16 1

2.2.1直接证明--综合法与分析法

主编 欧阳竹定稿 王辉庭

学习目标:

结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析

法和综合法的思考过程、特点。

学习重点:了解分析法和综合法的思考过程、特点

学习难点:分析法和综合法的思考过程、特点

学习过程:

学生探究过程:仔细阅读课本完成下列问题

证明下列问题:已知a,b>0,求证a(b2c2)b(c2a2)4abc

一. 综合法

1.综合法:

2.P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论用综合法证明不等式的逻辑关系是:

PQ1(Q1Q2)Q2Q3.....QnQ

3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公例

1、在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数列,求证△ABC为等边三角形.二. 分析法

1.分析法:

2.Q表示要证明的结论,用分析法证明不等式的逻辑关系是:

QP1(P1P2).....(Pn1Pn)PnP

让美丽的青春在335生命课堂里绽放!1

3.分析法的思维特点是:4.分析法的书写格式:

要证明命题B为真,只需要证明命题B1为真,从而有……

这只需要证明命题B2为真,从而又有……

……

这只需要证明命题A而已知A为真,故命题B例2.求证372

5例3.已知,k

2(kZ),且

sincos2sin①

sincossin2②1tan21tan

2求证:

1tan22(1tan2)。

三.基础达标

1、a,b,cR,求证

abc)

让美丽的青春在335生命课堂里绽放!2

2、ABC中,已知3bsinB,且cosBcosC

求证:ABC为等边三角形

3.已知a,b,c是不全相等的正数,求证:

a(b2c2)b(c2a2)c(a2b2)6abc(综合法)

4.已知a,b,c都是正数,且a,b,c成等比数列,求证:a2b2c2(abc)

2让美丽的青春在335生命课堂里绽放!3

高中数学选修2-2编号02-16 4

5.若实数x1,求证:3(1x2x4)(1xx2)2.(差值比较法)

22226.已知a,b,c,d∈R,求证:ac+bd≤(ab)(cd)

3322 7.设a、b是两个正实数,且a≠b,求证:a+b>ab+ab.

四.小结与反思

1.综合法:

2.分析法:

3.本节课的收获:4还存在的疑惑:让美丽的青春在335生命课堂里绽放!4

第二篇:_直接证明--综合法与分析法

教学反思:通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。

直接证明--综合法与分析法

1.教学目标:

知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和

综合法;了解分析法和综合法的思考过程、特点。

过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析

问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

2.教学重点:了解分析法和综合法的思考过程、特点

3.教学难点:分析法和综合法的思考过程、特点

4.教具准备:与教材内容相关的资料。

5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

6.教学过程:

学生探究过程:

合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。

若要证明下列问题:

已知a,b>0,求证a(bc)b(ca)4abc

教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。

学生活动:充分讨论,思考,找出以上问题的证明方法

1.综合法

综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式用综合法证明不等式的逻辑关系是: 222

2PQ1(Q1Q2)Q2Q3.....QnQ

综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公例

1、在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数列,求证△ABC为等边三角形.教师——引导

学生——小组讨论

讨论:若题设中去掉x1这一限制条件,要求证的结论如何变换?

2.分析法

证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,明尸 2 成立,再去寻求尸 2 成立的充分条件尸 3 件、定理、定义、公理等)为止.乞,再去寻求尸 1 成立的充分条件尸 2 ;为了证 „ „ 直到找到一个明显成立的条件(已知条即使 Q 成立的充分条件尸 1 .为了证明尸 1 成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么用分析法证明不等式的逻辑关系是:

QP1(P1P2).....(Pn1Pn)PnP

分析法的思维特点是:分析法的书写格式:

要证明命题B为真,只需要证明命题B1为真,从而有„„

这只需要证明命题B2为真,从而又有„„

„„

这只需要证明命题A而已知A为真,故命题B例

3、求证372

学生——自主解决

例4 已知,k

2(kZ),且

sincos2sin①

sincossin2②1tan21tan2求证:。221tan2(1tan)

教师——引导

学生——小组合作交流

练习:课本89页1,2,3

课后作业:第84页1,2,3

板书设计

第三篇:2.2.1直接证明--综合法与分析法

课题:直接证明--综合法与分析法

1.教学目标:

知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

2.教学重点:了解分析法和综合法的思考过程、特点

3.教学难点:分析法和综合法的思考过程、特点

4.教具准备:与教材内容相关的资料。

5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

6.教学过程:

学生探究过程:证明的方法

(1)、分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

(2)、例1.设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.

证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0

亦即a2-ab+b2>ab

由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab

即a3+b3>a2b+ab2,由此命题得证

24223(1xx)(1xx).x1例

2、若实数,求证:

证明:采用差值比较法:

3(1x2x4)(1xx2)

2=33x3x1xx2x2x2x

=2(xxx1)=2(x1)(xx1)432224242

3132(x1)2[(x)2].24 =

13x1,从而(x1)20,且(x)20,2

4132(x1)2[(x)2]0,24223(1xx)(1xx).24∴ ∴

abba例

3、已知a,bR,求证abab.

本题可以尝试使用差值比较和商值比较两种方法进行。

证明:1)差值比较法:注意到要证的不等式关于a,b对称,不妨设ab0.ab0

aabbabbaabbb(aabbab)0,从而原不等式得证。

2)商值比较法:设ab0,aabbaa1,ab0,ba()ab1.bb ab故原不等式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。

讨论:若题设中去掉x1这一限制条件,要求证的结论如何变换?

巩固练习:第81页练习1, 2, 3 ,4课后作业:第84页1,2,3教学反思:本节课学习了分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

第四篇:2.2.1直接证明--综合法与分析法教案

金太阳新课标资源网

直接证明--综合法与分析法

1.教学目标:

知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

2.教学重点:了解分析法和综合法的思考过程、特点

3.教学难点:分析法和综合法的思考过程、特点

4.教具准备:与教材内容相关的资料。

5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

6.教学过程:

学生探究过程:证明的方法

(1)、分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

(2)、例1.设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.

证明:(用分析法思路书写)

要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。

(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0亦即a2-ab+b2>ab

由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab即a3+b3>a2b+ab2,由此命题得证

24223(1xx)(1xx).x1例

2、若实数,求证:

证明:采用差值比较法:

金太阳新课标资源网wx.jtyjy.com

金太阳新课标资源网3(1x2x4)(1xx2)

2242423=33x3x1xx2x2x2x

22432(x1)(xx1)2(xxx1)= =

132(x1)2[(x)2].24 =

13x1,从而(x1)20,且(x)20,2

4132(x1)2[(x)2]0,24∴ ∴

3(1x2x4)(1xx2)2.a,bR,求证aabbabba.例

3、已知

本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到要证的不等式关于a,b对称,不妨设ab0.ab0

aabbabbaabbb(aabbab)0,从而原不等式得证。

2)商值比较法:设ab0,aabbaa1,ab0,ba()ab1.bbab 故原不等

式得证。

注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。

讨论:若题设中去掉x1这一限制条件,要求证的结论如何变换?

金太阳新课标资源网巩固练习:第81页练习1, 2, 3 ,4课后作业:第84页1,2,3教学反思:本节课学习了分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

第五篇:人教版数学选修精品--§2. 2 .1直接证明--综合法与分析法

人教版数学选修精品——推理与证明

§2.2.1直接证明--综合法与分析法

1.教学目标:

知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

2.教学重点:了解分析法和综合法的思考过程、特点

3.教学难点:分析法和综合法的思考过程、特点

4.教具准备:与教材内容相关的资料。

5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

6.教学过程:

学生探究过程:

合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。

若要证明下列问题:

已知a,b>0,求证a(b2c2)b(c2a2)4abc

教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。

学生活动:充分讨论,思考,找出以上问题的证明方法

设计意图:引导学生应用不等式证明以上问题,引出综合法的定义

证明:因为b2c22bc,a0,所以a(b2c2)2abc,因为ca2ac,b0,所以b(ca)2abc.因此, a(bc)b(ca)4abc.P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论

1.综合法

综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式用综合法证明不等式的逻辑关系是: 2222222

2PQ1(Q1Q2)Q2Q3.....QnQ

综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公例

1、在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数列,求证△ABC为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C;A , B , C为△ABC的内角,这是一个隐含条件,明确表示出来是A + B + C =; a , b,c成等比数列,转化为符号语言就是bac.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之

2间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.

证明:由 A, B, C成等差数列,有 2B=A + C . ①因为A,B,C为△ABC的内角,所以A + B + C=. ⑧

由①②,得B=.由a, b,c成等比数列,有b2ac.由余弦定理及③,可得

bac2accosBacac.再由④,得a2c2acac.(ac)0,因此ac.从而A=C.由②③⑤,得

A=B=C=.所以△ABC为等边三角形.

解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.

2、已知a,bR,求证aabbabba.本题可以尝试使用差值比较和商值比较两种方法进行。

证明:1)差值比较法:注意到要证的不等式关于a,b对称,不妨设ab0.ab0ababa

a

b

b

a

ab(a

a

bbab

b

ab)0,从而原不等式得证。

2)商值比较法:设ab0,aab()1.故原不等式得证。ba

bbab注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。

1,ab0, 

ab

b

讨论:若题设中去掉x1这一限制条件,要求证的结论如何变换?

2.分析法

证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,明尸 2 成立,再去寻求尸 2 成立的充分条件尸 3 件、定理、定义、公理等)为止.乞,再去寻求尸 1 成立的充分条件尸 2 ;为了证 „ „ 直到找到一个明显成立的条件(已知条即使 Q 成立的充分条件尸 1 .为了证明尸 1 成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么用分析法证明不等式的逻辑关系是:

QP1(P1P2).....(Pn1Pn)PnP

分析法的思维特点是:分析法的书写格式:要证明命题B为真,只需要证明命题B1为真,从而有„„

这只需要证明命题B2为真,从而又有„„„„

这只需要证明命题A而已知A为真,故命题B例

3、求证3证明:因为3只需证明(3

72

57和25都是正数,所以为了证明37)(25)

725

展开得1022120 即22110,2125 因为2125成立,所以

(3

7)(25)成立

即证明了3725

说明:①分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有„„ 这只需要证明命题B2为真,从而又有„„ 这只需要证明命题A为真 而已知A为真,故B必真

在本例中,如果我们从“21<25 ”出发,逐步倒推回去,就可以用综合法证出结论。但由于我们很难想到从“21<25”入手,所以用综合法比较困难。

事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特

‘‘

点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论 P.若由P‘可以推出Q‘成立,就可以证明结论成立.下面来看一个例子.

例4 已知,k(kZ),且

sincos2sin①

sincossin②

求证:

1tan1tan

1tan2(1tan)。

分析:比较已知条件和结论,发现结论中没有出现角,因此第一步工作可以从已知条件中消去.观察已知条件的结构特点,发现其中蕴含数量关系

222

2(sincos)2sincos1,于是,由 ①一2×② 得4sin2sin1.把

4sin2sin1与结论相比较,发现角相同,但函数名称不同,于是尝试转化结论:

统一函数名称,即把正切函数化为正(余)弦函数.把结论转化为

cossincossin

1212

(cossin),再与4sin2sin1比较,发现只要把c(os

2222

sin中的角的余弦转化为正弦,就能达到目的.)

证明:因为(sincos)2sincos1,所以将 ① ② 代入,可得

4sin2sin1.③

另一方面,要证

1tan1tan

1tan2(1tan)

1

sin

2sincos

12(1

sincossincos

即证

1,)

即证cos2sin2即证12sin2

(cossin),(12sin),即证4sin22sin21。

由于上式与③相同,于是问题得证。

例5 证明:通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆分析:当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为L,则周长为L的圆的半径为为(L

4L2,截面积为T1(L2)

L2);周长为L的正方形边长为

L4,截面积)((L4)2

证明:设截面的周长为L,依题意,截面是圆的水管的截面面积为(方形的水管的截面面积为(L4),所以本题只需证明(L2),截面是正

L2)

(L4)

为了证明上式成立,只需证明

L4

L

两边同乘以正数

L

因此,只需证明4,得

上式是成立的,所以(L2)

(L4)

这就证明了,通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆说明:对于较复杂的不等式,直接运用综合法往往不易入手,因此,通常用分析法探索

巩固练习:第81页练习1, 2,31、a,b,cR,求证

abc)

2、ABC中,已知3bsinB,且cosBcosC求证:ABC为等边三角形

3、a,b,c为ABC的三内角的对应边试证明:

aAbBcCabc

2课后作业:第84页1,2,3教学反思:本节课学习了分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。

分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。

通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。通过本节的学习,使学生了解直接证明的基本方法----综合法,了解综合法的思考过程、特点;培养学生的数学计算能力,分析能力,逻辑推理能力。本节的教学应该是比较成功的。

1、已知a,b,c是不全相等的正数,求证:

a(bc)b(ca)c(ab)6abc

证明:∵b2c2≥2bc,a>0,∴a(b2c2)≥2abc① 同理 b(c2a2)≥2abc②

c(ab)≥2abc③

因为a,b,c不全相等,所以b2c2≥2bc, c2a2≥2ca, a2b2≥2ab三式不能全取“=”号,从而①、②、③三式也不能全取“=∴a(bc)b(ca)c(ab)6abc

2、已知a,b,c都是正数,且a,b,c成等比数列,求证:abc(abc)证明:左-右=2(ab+bc-ac)∵a,b,c成等比数列,∴bac 又∵a,b,c都是正数,所以0b

ac≤

ac

2ac

222222

∴acb

∴2(abbcac)2(abbcb)2b(acb)0 ∴abc(abc)

2422

3、若实数x1,求证:3(1xx)(1xx).证明:采用差值比较法:

3(1xx)(1xx)

=33x3x1xx2x2x2x =2(xxx1)=2(x1)(xx1)

24242

343

=2(x1)2[(x

2)

4].12)

x1,从而(x1)0,且(x34]0,34

0,∴2(x1)2[(x

12)

∴3(1x2x4)(1xx2)2.例

4、已知a,b,c,d∈R,求证:ac+bd≤(a2b2)(c2d2)

分析一:用分析法

证法一:(1)当ac+bd≤0时,(2)当ac+bd>0时,欲证原不等式成立,2222

2只需证(ac+bd)≤(a+b)(c+d)

222222222222

即证ac+2abcd+bd≤ac+ad+bc+bd 即证2abcd≤b2c2+a2d2

即证0≤(bc-ad)

因为a,b,c,d∈R,所以上式恒成立, 综合(1)、(2)可知:分析二:用综合法

***2222

2证法二:(a+b)(c+d)=ac+ad+bc+bd=(ac+2abcd+bd)+(bc-2abcd+ad)=(ac+bd)2+(bc-ad)2≥(ac+bd)2

∴(a2b2)(c2d2)≥|ac+bd|≥ac+分析三:用比较法

证法三:∵(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)2≥0, ∴(a2+b2)(c2+d2)≥(ac+bd)2

∴(a2b2)(c2d2)≥|ac+bd|≥ac+bd, 即ac+bd

5、设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.证明:(用分析法思路书写)要证 a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,即需证a2-ab+b2>ab成立。(∵a+b>0)

只需证a-2ab+b>0成立,即需证(a-b)2>0成立。

而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。(以下用综合法思路书写)

∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0亦即a2-ab+b2>ab

由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab

3322

即a+b>ab+ab,由此命题得证.

下载人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法word格式文档
下载人教版数学选修精品--§2._2_.1__直接证明--综合法与分析法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    04直接证明--综合法与分析法的应用

    直接证明—分析法与综合法的应用课型:习题课教学目标:知识与技能:结合教学实例,了解直接证明的两种基本方法之过程与方法:通过教学实例了解分析法的思考过程、特点;体会分析法和综......

    直接证明与间接证明——综合法与分析法参考答案

    直接证明与间接证明——综合法与分析法参考答案课堂合作探究1、A2、B3、A4、证明:(ab(ab)2a0,b0ab0,00基础训练1、C2、C3、D4、B5、C6、C 能力提升1、证法一:a,b,c,是不等的正......

    选修2-2§2.2.1综合法与分析法

    人教版数学选修精品——推理与证明§2. 2 .1直接证明--综合法与分析法1.教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综......

    选修1-2 直接证明 分析法5篇

    直接证明-分析法教学目标:1、结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2、多让学生举命题的例子,培养他们的辨......

    综合法与分析法(范文模版)

    课题:§2.2.1 综合法与分析法(说课稿) 各位评委、各位老师: 大家好!我是来自……..,希望我今天的说课能给大家留下美好的印象。我说课的课题是高中课程标准实验教材数学选修2-2第......

    分析法与综合法

    实验中学高二数学(理科)学案日期:审核人:班级:_________姓名:_________等级:————————————————————————————————————————————————......

    直接证明-综合法与分析法的应用学案[优秀范文五篇]

    2.2.1直接证明—综合法与分析法的应用 班级:姓名: 【学习目标】: (1)结合教学实例,了解直接证明的两种基本方法之一 (2)通过教学实例,了解综合法的思考过程、特点 (3)体会数学证明的特......

    分析法与综合法论文

    目录内容摘要和关键词„„„„„„„„„„„„„„„„„„„„„„„„„„21. 分析法与综合法„„„„„„„„„„„„„„„„„„„„„„„„„22. 分析法与综合法在......