数学公理

时间:2019-05-15 07:59:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学公理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学公理》。

第一篇:数学公理

过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行

12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1 三个角都相等的三角形是等边三角形

推论 2 有一个角等于60°的等腰三角形是等边三角形

在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半

定理 线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

第二篇:初一数学中的公理定理

(一)学过的公理:

1、直线公理:两点确定一条直线。

2、线段公理:两点之间,线段最短。

3、垂线公理:过一点有且只有一条直线与已知直线垂直。

4、平行公理:过直线外一点,有且只有一条直线与已知直线平行。

5、平行线判定公理:同位角相等,两直线平行。

6、平行线性质公理:两直线平行,同位角相等。

7、全等三角形性质公理:全等三角形对应边相等,对应角相等

(二)学过的定理及推论

1、三角形内角和定理:三角形内角和等于180° • 推论1:直角三角形两锐角互余

• 推论2:三角形的一个外角等于与它不相邻的两个内角的和。• 推论3:三角形的外角大于任何一个与它不相邻的内角。

2、公理:两点之间,线段最短。• 定理:三角形两边之和大于第三边 • 推论:三角形两边之差小于第三边。

3、补角的性质:同角或等角的补角相等

4、余角的性质:同角或等角的补角相等

5、对顶角的性质:对顶角相等

6、垂线的性质:直线外一点与直线上各点的连线中,垂线段最短。

7、平行线公理推论:如果两条直线都和第三条直线平行,那么这两条直线互相平行。

8、平行线判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为:同位角相等,两直线平行。• 定理1:内错角相等,两直线平行。• 定理2:同旁内角互补,两直线平行

9、平行线性质公理:两直线平行,同位角相等。• 定理1:两直线平行,内错角相等。• 定理2:两直线平行,同旁内角互补。• 推论:垂直于同一直线的两直线的互相平行。

第三篇:七年级数学平行线及平行公理.doc

平行线及平行公理

教学建议

1、教材分析

(1)知识结构

本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.(2)重点、难点分析

本节的重点是:平行公理及其推论.承认“经过直线外一点有且只有一条直线与这条直线平行”的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的“有且只有”的意义.本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的“在同一平面内”的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.2、教法建议

(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.(2)分析概念:教师可以举一组图形,帮助学生理解定义中强调的“在同一平面内”这个前提条件.初步形成

(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.(4)平行公理及其推论

在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.教学设计示例

一、教学目标

1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.二、学法引导

1.教师教法:尝试法、引导法、发现法.2.学生学法:在教师的引导下,尝试发现新知,造就成就感.三、重点、难点及解决办法

(-)重点

平行公理及推论.(二)难点

平行线概念的理解.用心 爱心 专心

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决.四、教具学具准备

投影仪、三角板、自制胶片.五、师生互动活动设计

1.通过投影片和适当问题创设情境,引入新课.2.通过教师引导,学生积极思维,进行反馈练习,完成新授.3.学生自己完成本课小结.六、教学步骤

(-)明确目标

掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.(二)整体感知

以情境引出课题,以生活知识和已有的知识为基础,引导学生学习习近平行公理及其推论,并以变式训练强化和巩固新知.(三)教学过程

创设情境,引出课题

师:前面我们学习了两条直线相交的情形,下面清同学们看投影片.观察投影片中的铁路桥梁以及立在路边的三根电线杆,再请同学们观察黑板相对的两条边和横格本中两条横线,若把它们向两方延长,看成直线,它们还是相交直线吗?

学生齐声答:不是.师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容.(板书课题)

[板书]24.平行线及平行公理

【教法说明】通过具体的实物和实物的图形,使学生建立起不相交的感性认识,同时在头脑中初步形成平行线的图形.探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边„„

师:我们把它们向两方无限延伸,得到的直线总也不会相交.我们把这样的直线叫做平行线.[板书]在同一平面内,不相交的两条直线叫做平行线.【教法说明】初中几何必须重视几何概念的直观性,所以让学生多观察实物形状,在形成了感性认识的基础上,认识数学名称,让学生从中感受到数学的实在性,减少抽象性.教师出示投影片(课本第74页图2–17).师:请同学们观察,长方体的棱 与 无论怎样延长,它们会不会相交?

学生:不会相交.师:那么它们是平行线吗?

学生:不是.师:也就是说平行线的定义必须有怎样的前提条件?

学生:在同一平面内.师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行.【教法说明】通过教师的引导,学生观察分析,自己得出结论,从而使学生切实体会到平行

用心 爱心 专心 线的“在同一平面内”这个前提条件的重要性.教师在黑板上给出课本第73页图2–16.讲解:平行用符号“ ”表示,如图直线 与 是平行线记作“ ”(或)读作“平行于 ”(或平行于)也就是说平行是相互的.【教法说明】这里教师不必赘述,让学生清楚平行线符号表示、读法和记法就可以了,对于平行线的图形经常会使用变式图形,不要总是横平竖直的,以防形成思维定式.师:请同学们思考,在同一平面内任意画两条不同的直线,它们的位置关系只能有几种情况,试画一画,同桌的可以讨论.学生:两种.相交和平行.由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种.尝试反馈,巩固练习(出示投影)

1.判断正误

(1)两条不相交的直线叫做平行线.()

(2)有且只有一个公共点的两直线是相交直线.()

(3)在同一平面内,不相交的两条直线一定平行.()

(4)一个平面内的两条直线,必把这个平面分为四部分.()

2.下列说法中正确的是()

A.在同一平面内,两条直线的位置关系有相交、垂直、平行三种.B.在同一平面内,不垂直的两直线必平行.C.在同一平面内,不平行的两直线必垂直.D.在同一平面内,不相交的两直线一定不垂直.学生活动:学生回答,并简要说明理由.【教法说明】这组练习旨在巩固学生掌握平行线定义及平面内两直线的位置关系,通过判断(1)、(3)题让学生进一步体会平行线的“在同一平面内”的前提条件,通过判断(2)、(4)题和选择题使学生对两直线位置关系,尤其是对垂直是相交的一种特殊情况有更深层的理解.师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示).已知直线 和 外一点 ,过点 画直线 ,使.师:请根据语句,自己画出已知图形.学生活动:学生在练习本上画出图形.师:下面请你们按要求画出直线.学生活动:学生能够很快完成,然后请一个学生在黑板上板演,其他学生观察他的画图过程是否正确,然后师生一起订正.注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画.【教法说明】画平行线是几何画图的基本技能之一,在以后的画图中常常会遇到,要求学生使用工具,不仅能养成良好的学习习惯,也能培养学生严谨的学习态度.尝试反馈,巩固练习(出示投影).1.画线段 ,画任意射线 ,在 上取、、三点,使 ,连结 ,用三角板画 , ,分别交 于、,量出、、的长(精确到).2.读下列语句,并画图形

(1)点 是直线 外的一点,直线 经过点 ,且与直线平行.(2)直线、是相交直线,点 是直线、外的一点,直线 经过点 与直线平行与直线 相交于.用心 爱心 专心

(3)过点 画 ,交 的延长线于.学生活动:学生在练习本上按要求画图,并由两个学生在黑板上画第2题的(2)、(3)题,学生画完后教师给出第1题的图形(提前做好的投影片),请学生回答测量的结果,然后共同订正第2题的(2)、(3)题.【教法说明】这组练习重点巩固平行线的画法及理解描述图形形状和位置关系的语句,能够根据语句画出正确图形,注意要求学生用准确的几何语言反映图形,同时真正理解几何语言才能画好图形.师:我们练习了过直线外一点画已知直线的平行线,请同学们回忆,过直线外一点能不能画直线的垂线,能画几条?

学生活动:学生思考并回答,能画,而且只能画一条.师:下面请你试一试,前面我们完成的过直线外一点与已知直线平行的直线可以画几条,想一想,你能得到什么结论?

学生活动:学生动手操作,思考后总结出结论:经过直线外一点,有且只有一条直线与已知直线平行.师:我们把这个结论叫平行公理,教师板书.【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行.【教法说明】学生对垂线的惟一性比较熟悉,通过对惟一性的回顾,学生能够用类比的思想,把自己动手得到的实验结论采用准确的几何语言描述出来,这样不仅培养了学生善于类比的思想,同时也训练了学生语言的规范性.师:过直线外一点,能画这条直线的惟一平行线,若没有条件“过直线外一点”,问你能画已知直线的平行线吗?能画多少条?

学生:思考后,立即回答,能画无数条.师:请同学们在练习本上完成.(出示投影)

已知直线 ,分别画直线、,使 ,.学生活动:学生在练习本上完成.师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说.师:为什么呢?同桌可以讨论.学生活动:学生积极讨论,各抒己见.【教法说明】几何的学习不仅要求学生有较强的识图能力,而且要求学生有过硬的分析能力,也就是说理能力.初一几何课是几何课的起始课,从开始就让学生养成自己动手、动脑、思考、分析问题的习惯,即加强几何思维不惯的培养,这是个很重要的内容.学生活动:教师让学生积极发表意见,然后给出正确的引导.师:我们观察图形,如果直线 与 相交,设交点为 ,那么会产生什么问题呢?请同学们讨论.学生活动:学生在教师的启发引导下思考、讨论,得出结论.师:同学们想得很好,因为 , ,于是过点 就有两条直线、都与平行,根据平行公理,这是不可能的,这就是说, 与 不能相交,只能平行,由此我们得到平行公理的推论.[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.师:在同一平面内,不相交的两条直线是平行的,那么不相交的两条射线(或线段)也是平行的,对吗?为什么?

学生活动:学生思考,回答:不对,给出反例图形,例如:如图1所示,射线 与 就不相交,也不平行.师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

用心 爱心 专心

生:它们所在的直线平行.尝试反馈,巩固练习(投影)

填空:∵ ,(已知),∴________ _______().学生活动:口答.【教法说明】巩固平行公理推论的掌握,同时让学生清楚平行公理推论的符号语言,为今后进行推理论证打好基础.变式训练,培养能力(出示投影)

选择题

下列图形都不相交,哪一个平行()

【教法说明】进一步加深学生对平行线的理解,尤其是平行的变式图形.(四)总结、扩展

师:今天我们学习了平行线,知道了同一平面内两条直线位置关系只有相交、平行两种,完成下表:(出示投影)

学生活动:表格中的内容均由学生口答出来.【教法说明】通过学生完成表格,不仅回顾本节所学知识,同时培养学生的归纳总结能力,使学生所学知识形成体系,从而更好地掌握知识.八、布置作业

(一)必做题

课本第96页习题2.2A组第3题(1)、(2)题.(二)思考题

1.能直接利用定义判断两条直线是否平行吗?

2.怎样才能判断两条直线是否平行呢?

3.阅读课本第76页,“读一读”的观察与实验,课下同学之间相互演示.作业答案

3.(1)

(2)

九、板书设计

用心 爱心 专心

第四篇:高二数学 立体几何的概念、公理、定理

立体几何的概念、公理、定理

王 春 老师 编辑 2007-12-20

一.写出以下公理、定理,并根据图形写出它们的条件与结论。

(一)立体几何三公理

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。A∈a,B∈aA∈a,B∈a

公理

2a?bA耷ab=a,A a aÌa a

公理3:经过不在同一直线上的三点,有且只有一个平面。

A、B、C不在同一直线上

Þ有且只有一个平面α,使A∈α,B∈α,C∈α

推论

1:经过一条直线和这条直线外的一点,有且只有一个平面。

∈a AÏa Þ有且只有一个平面a,使 Ìa

推论2:经过两条相交直线,有且只有一个平面。

a∩b=AÞÌa 有且只有一个平面a,使Ìa

推论3:经过两条平行直线,有且只有一个平面。

a∥b=AÞ有且只有一个平面a,使Ìa Ìa

(二)空间直线

公理4 :平行于同一条直线的两条直线互相平行。c

a

b a∥Þb∥a//c 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

AB//A/B/

?BAC B/A/C/

//AC//ACÞ

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。

用心 爱心 专心116号编辑

Zishi2007-12-20

异面直线判定定理:用平面内一点与平面外一点的直线,A∈a

PÏa l与a异面 aÌa

(三)直线和平面

Þ

直线和平面平行的判定定理:如果平面外一条直线和 这个平面内的一条直线平行,那么这条直线和这个平面平行。

l

ab

a//b bÌa aËa

Þ

a//a

aÌa

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

ab

a//aa?bbaÌb

Þ

a//b

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么

baa烫a,ba

a//b a?bOb^a轣cab^b c^a,c^

Þ

定理 :如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直这个平面。

a

定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

α∥βl⊥α

l⊥β

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

a

b

a^a

b^

b

Þ

a//b

射影定理:从平面外一点向这个平面所引的垂线段和斜线段中,(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

Zishi2007-12-20

用心 爱心 专心116号编辑

PA^aPA^a

aaÌa定理:aÌ

轣POa逆定理:

AO^a

PO^a

轣AOa

(四)平面与平面

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

推论:如果一个平面内有两条相交直线分别平行另一个平面的两条相交直线,那么这两个平面平行。

a烫a,baa?b

O

a//b,b//b

定理Þa//b

b///推论

a?bO

a烫a,baa/烫b,b/

a//a/,b//b/a?bO

Þa//b

/

b

/

定理:垂直于同一直线的两个平面平行。定理:平行于同一平面的两个平面平行。

a

a^a a^b

Þ

a//b

a//b

g//b

Þa//g

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

a//b

a?gaÞa//bb?gb

两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面

互相垂直。

a^aaÌb

Þ

a

a^b

两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直

线垂直于另一个平面。a^b

a?b CD

轣ABb ABÌa

AB^CD

定理:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内。a^b PÎa

尢aaPÎa

a^b

Zishi2007-12-20

用心 爱心 专心116号编辑

二、概念与性质

(一)空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、异面直线的定义:不同在任何一个平面内的两条直线。

(二)直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

1、直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

2、直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面 的垂线,平面叫做直线a的垂面。

(三)两个平面的位置关系:平行、相交

1、两个平面互相平行的定义:空间两平面没有公共点。

2、两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

(四)角

1.两异面直线所成的角:过空间任意一点引两条直线分别平行

ba

b'a'

(或重合)于两条异面直线,它们所成的锐角(或直角)。范围为(0°,90°]

2、直线与平面所成的角:平面的一条斜线和它在这个平面内的射影 所成的锐角。

所成的角为0°角。直线和平面所成角的取值范围为 [0°,90°]

(2)最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

(3)若斜线与平面所成的角为α,其在此平面内的射影与平面内的一 条直线所成的为β,斜线与这条直线所成的角为γ则cosγ=cosα·cosβ

3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(1)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(2)直二面角:平面角是直角的二面角叫做直二面角。

(五)距离

1、两点的距离:连结两点的线段的长度。

B

A

a(1)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,2、平行平面间距离:两条平行线中,一条直线上任意一点到另一条直线的距离。

3、两异面直线间距离: 两条异面直线的公垂线在这两条异面直线间的线段的长度。

4、两异面直线上两点的距离:若两条异面直线a、b所成的角为θ,它们的公垂线段AA'的长度为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,则

Zishi2007-12-20

用心 爱心 专心116号编辑

5、点到平面的距离.从平面外一点引一个平面的垂线,这个点和垂足间的距离。

6、平行直线和平面的距离:直线上任意一点到平面的距离。

(六)棱柱

1、棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

2、棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

(七)棱锥

1、棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

2、棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

3、正棱锥

(1)正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。(2)正棱锥的性质:

①各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。②多个特殊的直角三角形

4、a、相对棱互相垂直的正三棱锥的顶点在底面的射影为底面三角形的垂心。b、侧棱相等的棱锥的顶点在底面的射影为底面三角形的外心。

c、侧面与底面所成的二面角相等的棱锥的顶点在底面的射影为底面三角形的内心。

(八)多面体欧拉公式:V(角)+F(面)-E(棱)=

2(九)正多面体只有五种:正四、六、八、十二、二十面体。

(十)球

1、球面:到定点的距离等于定长的点的轨迹。

2、球体:与定点的距离等于或小于定长的点的集合.

3、经度:某地点的经度就是经过这点的经线和地轴确定的半平面与本初子午线与地轴确定的半平面所成二面角的平面角的度数.

4、纬度:某地的纬度就是经过这点的球半径和赤道平面所成的角度.

5、两点的球面距离:球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度。

6、定理:球心与小圆的圆心的连线与小圆所在的平面垂直。

437、球的表面积:S球面=4pR8、体积公式:V球=pR9、V圆锥=

Zishi2007-12-20

133

pRV圆柱=pR333

用心 爱心 专心116号编辑

第五篇:高一数学空间图形的基本关系与公理教案

高一数学空间图形的基本关系与公理教

本资料为woRD文档,请点击下载地址下载全文下载地址

空间图形的基本关系与公理

一.教学内容:

空间图形的基本关系与公理

二.学习目标:、学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;

2、培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;

3、培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。

三、知识要点

(一)空间位置关系:

I、空间点与线的关系

空间点与直线的位置关系有两种:点P在直线上:;点P在直线外:;

II、空间点与平面的关系

空间点与平面的位置关系有两种:点P在平面上:点P在平面外:;

III、空间直线与直线的位置关系:

IV、空间直线与平面的位置关系:

V、空间平面与平面的位置关系:平行;相交

说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。

(二)异面直线的判定、定义法:采取反证法的思路,否定平行与相交两种情形即可;

2、判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。

(三)平面的基本性质公理

、公理1

如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内,或曰平面经过这条直线)。

2、公理2

经过不在同一条直线上的三点,有且只有一个平面(即确定一个平面)。

3、公理3

如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线。

4、平面的基本性质公理的三个推论

经过直线和直线外一点,有且只有一个平面;

经过两条相交直线,有且只有一个平面;

经过两条平行直线,有且只有一个平面

思考:

公理是公认为正确而不需要证明的命题,那么推论呢?

平面的基本性质公理是如何刻画平面的性质的?

(四)平行公理(公理4):平行于同一条直线的两条直线平行。

(五)等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(六)空间四边形:顺次连接不共面的四点构成的图形称为空间四边形。

【典型例题】

考点一

空间点线面位置关系的判断:主要判断依据是平面的基本性质公理及其推论,平行公理、等角定理等相关结论。

例1.下列命题:

空间不同的三点可以确定一个平面;

有三个公共点的两个平面必定重合;

空间中两两相交的三条直线可以确定一个平面;

④平行四边形、梯形等所有的四边形都是平面图形;

⑤两组对边分别相等的四边形是平行四边形;

⑥一条直线和两平行线中的一条相交,必定和另一条也相交。

其中正确的命题是。

解:⑥。

例2.空间中三条直线可以确定几个平面?试画出示意图说明。

解:0个、1个、2个或3个。分别如图(图中所画平面为辅助平面):

考点二

异面直线的判断:主要依据是异面直线的定义及判定定理。

例3.如图是一个正方体的展开图,如果将它还原为正方体,那么AB、cD、EF、GH这四条线段所在的直线是异面直线的有__________对,分别是____________________?

解:3对,分别是AB、GH;AB、cD;GH、EF。

考点三

“有且只有一个”的证明:一般地,此类题型的证明需要分为两个步骤,分别证明“有”即存在性和“只有一个”即唯一性。

例4.求证:过两条平行直线有且只有一个平面。

已知:直线a∥b。

求证:过a,b有且只有一个平面。

证明:存在性:由平行线的定义可知,过平行直线a,b有一个平面。

唯一性(反证法):假设过a,b有两个平面。在直线上任取两点A、B,在直线b上任取一点c,则A、B、c三点不共线。由于这两个平面都过直线a,b,因此由公理1可知:都过点A、B、c。由平面的基本性质公理2,过不共线三点的平面唯一存在,因此重合,与假设矛盾。矛盾表明:过平行直线a,b只有一个平面。

综上所述:过a,b有且只有一个平面。

考点四

共点的判断与证明:此类题型主要有三线共点和三面共点。

例5.三个平面两两相交有三条交线,求证:三条交线或平行,或交于一点。

已知:平面,求证:a∥b∥c或者a,b,c交于一点P。

证明:因为,故a,b共面。

I、若a∥b:由于,故,因直线,故a,c无公共点。又a,c都在平面内,故a∥b;故a∥b∥c。

II、若,则,故知

综上所述:命题成立。

说明:证明三点共线的问题的常用思路是先证两条直线相交,然后再证该交点在第三条直线上;证明交点在第三条直线上常证明该点是两个相交平面的公共点,从而在这两个平面的交线上即在第三条直线上。

考点五

共线的判断与证明:常见题型是三点共线。

例6.如图,o1是正方体ABcD-A1B1c1D1的面A1B1c1D1的中心,m是对角线A1c和截面B1D1A的交点,求证:o1、m、A三点共线。

证明:连结Ac.因为A1c1∩B1D1=o1,B1D1平面B1D1A,A1c1AA1c1c,所以o1∈平面B1D1A且o1∈AA1c1c。同理可知,m∈平面B1D1A且m∈AA1c1c;A∈平面B1D1A且A∈AA1c1c。所以,o1、m、A三点在平面B1D1A和AA1c1c的交线上,故o1、m、A三点共线。

说明:证明三线共点问题的常见思路是证明第三点在前两点所确定的直线上;或者证明三点是两相交平面的公共点,从而在这两个平面的交线上。

考点六

共面问题的判断与证明:此类题型常见的是四点共面或三线共面,如证明某个图形是平面图形。

例7.如图,在空间四边形ABcD中,E、F分别是AB、AD的中点,G、H分别是Bc、cD上的点,且cG=Bc/3,cH=Dc/3。求证:E、F、G、H四点共面;直线FH、EG、Ac共点。

证明:如图,连结HG,EF。在△ABD中,E、F分别为AB、AD中点,故EF是△ABD的中位线,故EF∥BD。在△cBD中,cG=Bc/3,cH=Dc/3,故GH∥BD,故EF∥GH,从而GH、EF可确定一个平面,即G、H、E、F四点共面。

由于E、F、G、H四点共面,且FH与EG不平行,故相交,记交点为m,则m∈FH,FH面AcD,故m∈面AcD;m∈EG,EG面ABc,故m∈面ABc。从而m是面AcD和面ABc的公共点,由公理3可知,m在这两个平面的交线Ac上,从而FH、EG、Ac三线共点。

说明:共面问题的常用的处理方法是利用平面的基本性质公理2及三个推论,先证明部分元素确定一个平面,再证剩下的元素也在此平面上;有时也可先证部分元素共面,剩下的元素共面,然后证明这两个平面重合(此时也可用反证法)。

[本讲涉及的主要数学思想方法]、数学语言是数学表述和数学思维不可缺少的重要工具,必须能将这三种语言即文字语言、符号语言和图形语言进行准确的互译和表达,这在空间关系的证明与判断中显得十分重要;

2、空间观念和空间想象能力:高考中立体几何题的题型功能最重要的一点就是考查考生的空间观念和空间想象能力,因为我们是通过平面图形(直观图)去研究空间关系,所以同学们在学习过程中一定要多观察、多思考,动手做一些空间模型或通过电脑动画模拟一些空间图形,培养空间概念,提高空间想象能力。

【模拟试题】

一、选择题、在空间内,可以确定一个平面的条件是()

A.两两相交的三条直线

B.三条直线,其中的一条与另两条分别相交

c.三个点

D.三条直线,它们两两相交,但不交于同一点

2、(XX辽宁卷)在正方体ABcDA1B1c1D1中,E、F分别为棱AA1、cc1的中点,则在空间中与三条直线A1D1,EF,cD都相交的直线()

A.不存在 B.有且只有两条

c.有且只有三条

D.有无数条

*

3、已知平面外一点P和平面内不共线的三点A、B、c。A'、B'、C'分别在PA、PB、Pc上,若延长A'B'、B'C'、A'C'与平面分别交于D、E、F三点,则D、E、F三点()

A.成钝角三角形

B.成锐角三角形

c.成直角三角形

D.在一条直线上

4、空间中有三条线段AB、Bc、cD,且∠ABc=∠BcD,那么直线AB与cD的位置关系是()

A.平行

B.异面

c.相交

D.平行或异面或相交均有可能

5、下列叙述中正确的是()

A.因为P∈α,Q∈α,所以PQ∈α。

B.因为P∈α,Q∈β,所以α∩β=PQ。

c.因为,c∈AB,D∈AB,因此cD∈α。

D.因为,所以A∈(α∩β)且B∈(α∩β)。

6、已知异面直线a,b分别在平面α,β内且α∩β=c,那么c()

A.至少与a,b中的一条相交;

B.至多与a,b中的一条相交;

c.至少与a,b中的一条平行;

D.与a,b中的一条平行,与另一条相交

7、已知空间四边形ABcD中,m、N分别为AB、cD的中点,则下列判断正确的是()

二、填空题

8、在空间四边形ABcD中,m、N分别是Bc、AD的中点,则2mN与AB+cD的大小关系是。

9、对于空间中的三条直线,有下列四个条件:三条直线两两相交且不共点;三条直线两两平行;三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交。其中,能推出三条直线共面的有。

三、解答题

0、正方体ABcD-A1B1c1D1中,E、F分别是AB、AA1的中点。

求证:cE、D1F、DA三线共点;

求证:E、c、D1、F四点共面;

1、在正方体ABcD-A1B1c1D1中,若Q是A1c与平面ABc1D1的交点,求证:B、Q、D1三点共线。

2、如图,已知α∩β=a,bα,cβ,b∩a=A,c//a.求证:b与c是异面直线。

*

13、(XX高考题改编)正方体ABcD-A1B1c1D1中,P、Q、R分别是AB、AD、c1B1的中点,试作出正方体过P、Q、R三点的截面。

下载数学公理word格式文档
下载数学公理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    armstrong公理系统证明

     Armstrong公理系统的证明 ① A1自反律:若Y X U,则X→Y为F所蕴含 证明1 设Y X U。 对R的任一关系r中的任意两个元组t,s: 若t[X]=s[X],由于Y X,则有t[Y]=s[Y],所以X→Y成立,自反律得......

    公理系统(推荐阅读)

    公理化方法 所谓公理化方法,就是指从尽可能少的原始概念和不加证明的原始命题(即公理、公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法。 1简介 恩格斯曾说过:数......

    平行公理(推荐阅读)

    1.平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行。 简单说成:同位角相等,两直线平行。 2.平行线的判定定理:两条直线被第三条直线所截,如果内错角相等......

    备战2014年数学中考————初中平面几何定理公理总结

    初中平面几何定理公理总结 一、线与角 1、两点之间,线段最短 2、经过两点有一条直线,并且只有一条直线 3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等 4、经过直线......

    初三数学证明及相关公理、定理、推论(共5篇)

    第一次课:证明及相关公理、定理、推论一、考点、热点回顾1、《证明(一)》知识点回顾:全等三角形的四个公理和一个推论公理三遍对应相等的两个三角形全等。(SSS)公理两边及其夹角......

    真命题与公理、定理

    真命题与公理、定理 初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。 真命题就是正确的命题,即如果命题的题设成立,那么结论一定成......

    公理3的推论3的证明

    公理3的内容是:经过不在同一直线上的三个点,有且只有一个平面。公理3的推论3是:两条平行的直线确定一个平面。所有的推论是由相应的公理证明的。证明:设两直线l和m互相平行,取l上......

    高中数学立体几何模块公理定理

    高中数学立体几何模块公理定理汇编 Hzoue/2009-12-12 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内) 公理2 过不在......