第一篇:高等代数教案第一章基本概念
第一章
一 综述
基本概念
1.本章是本门课程所需要的最基本概念(集合、映射、整数的一些性质、数环和数域)和方法(数学归纳法、反证法).所需位置不同,可根据课时安排及进度分散处理.如集合、整数的一些整除性质、数学归纳法、数环和数域可先讲,映射可放在线性空间前讲.2.从内容上讲,除集合中的卡氏积的概念及数环、数域的概念外,其它内容是学生在中学数学当中熟知的,只不过是将有关内容的系统化、理论化(如整数的整除性、映射、数学归纳法,其在中学中熟知其一些事实,今在理论上加以严密论证).3.新的知识点是集合的卡氏积、数环、数域的概念,数学归纳法作为定理的论证.4.学习本部分的难点是:从概念出发进行推理论证,这需要从具体例子引导训练,逐步培养.二 重点、难点
1.重点在于所有基本概念,特别是引入的新概念.2.难点是可逆映射、整数的整除性、数学归纳法本身的证明.1.1
集
合
一 教学思考
1.集合可以作为不定义的概念来处理,有些教材上给出了一个简单刻化.2.确定一个集合A,就是要确定哪些是集合的元素,哪些不是集合的元素.说明一个集合包含哪些元素时,常用“列举法”、“示性法”(描述法).3.中学代数大部分的内容是计算,因此一开始遇到证明题时,往往不知从何入手,此需注意培养学生的推理能力,这里应通过证明“集合相等”来加强这方面的训练.4.为稍拓宽知识,可讲解一下补集、幂集等概念.二 重点、要求
1.重点、难点:卡氏积的概念及从概念出发(集合相等、子集等)进行推理.2.要求:使学生了解有关集合的刻化及运算,培养推理能力.三 教学过程
1.集合:简称集,在此是一个不定义的原始概念,通常可给出如下描述性的解释:即所谓集合,是指由某些确定的事物(或具有某种性质的事物)组成的集体.其中每个事物称为这个集合的元素.常用大写字母A、B、C表示集合,用小写字母a、b、c表示集合的元素.若a是集合A的元素,就说a属于A,记作aA,或者说A包含a.若a不是集合A的元素,就说a不属于A,记作aA,或者说A 不包含a.常采用两种方法:
(1)列举法:列出集合的所有元素(包括利用一定的规律列出无限集)的方法.如A1,2,3,.(2)示性法(描述法):给出集合所具有的特征性质.如Bx|x3x40表示方程
2x23x40的解集.2.集合的分类(按所含元素的个数分): 有限集:只含有有限多个元素的集合.无限集:由无限多个元素组成的集合.空集:不含任何元素的集合.用表示.约定:是任何集合的子集.3.集合间的关系:
(1)设A、B是两个集合.“xAxB”)子集:若A的每个元素都是B的元素,则称A是B的子集(即若..记作AB
如:f:RR,xx;g:RR,x2.映射的合成
x2.有fg.(1)定义3.设f:AB,g:BC是两个映射,对xA,有f(x)B,从而g(f(x))C,这样,对xA,就有C中唯一的g(f(x))与之对应,就得到A到C的一个映射,这个映射是由f:AB和g:BC所决定的,称为f与g的合成.记作gf.即:gf:AC,xg(f(x)).例子:f:RR,xx2;g:RR,xsinx.则
gf:RR,xsinx2;fg:RR,xsin2x.(2)映射合成满足结合律:
设f:AB,g:BC,h:CD,则由合成映射的定义可得AD的两个映射:h(gf),(hg)f,则h(gf)(hg)f.3.几类特殊映射
定义4.设f:AB,对xA,有f(x)B,则所有这样的象所作成B的子集,用f(A)表示,即f(A)f(x)|xA,叫做A在f下的象,或叫做映射f的象.(1)满射: 定义5.设f:AB是一映射,若f(A)B,则称f是A到B上的一个映射,也称f是一个满射.(2)单射: 定义6.设f:AB是一个映射,若对x1,x2A,只要x1x2,就有f(x1)f(x2),则称f是A到B的一个单射,简称单射.(3)双射(1-1对应):定义7.若f:AB既是单射又是满射,即
1)若 f(x1)f(x2)x1x2,x1,x2A;
2)f(A)B.则称f是A到B的一个双射.特别若f是A到A上的一个1-1对应,就称f为A的一个一一变换;有限集A到自身的双射称为A的一个置换.如:jA是A的一个一一变换,同样jB是B的一个一一变换.由映射合成及相等:若f:AB,则有fjAf,jBff.TH1.2.1令f:AB是一个映射,则:下述两条等价:1)f是双射;2)存在g:BA使得gfjA,fgjB.且2)成立时,其中的g由f唯一决定.(4)可逆映射及其逆映射
定义8.设f:AB,若存在g:BA,使得gfjA,fgjB,则称f是可逆映射,且称g为f的逆映射.求其逆的方法
由定理知:f:AB可逆f是双射.而验证双射有具体方法,所以可先证f可逆(双射),再求其逆.而由TH1证知f可逆时其逆唯一为g:BA,yx(若f(x)y)(即对yB,找在f下的原象).(5)代数运算
引例:我们常说整数加法是整数的一个“代数运算”.其意思是说对任一对整数(a,b),有确定的唯一一个整数(通过相加)与之对应,用映射的观点来说整数加法是ZZZ的一个映射::(a,b)ab.同样实数乘法亦然.一般地:
定义9.设A是一个非空集合,我们把AAA的一个映射叫做集合A的一个代数运算.若集合A 有代数运算,也说A对封闭.要从中体会严格的推理论述.此与多项式相应的问题平行,到时应对照学习.1.整除、带余除法(1)整除
这时a叫做b的一个因数,而b叫做a的一个倍数.若a不整除b(即对dZ,adb),记作a|b.B)整除的性质:
1)a|b,b|ca|c;
(传递性)2)a|b,a|ca|(bc);3)a|b,cZa|bc;
4)由2)、3)a|bi,ciZ,i1,2,3,,na|bcii;
5)1|a,a|0,a|a(aZ);由此任意整数a有因数1,a,它们称为a的平凡因数; 6)若a|ba|b;
7)a|b且b|aab或ab.(对称性)(2)带余除法
“整除”是整数间的一种关系,任意两个整数可能有这种关系,可能没有这种关系,一般地有:
TH1.4.1(带余除法)设a,bZ,且a0;那么q,rZ使得baqr
且0ra.满足上述条件的q,r是唯一的.2.最大公因数、互素(1)最大公因数
且c|a,c|bc|d(即d能被a与b的任一个公因数整除).则称d为a与b的一个最大公因数.最大公因数的概念可推广至有限个整数.B)最大公因数的存在性(及求法)
TH1.4.2 任意n(n2)个整数a1,a2,,an都有最大公因数;若d为a1,a2,,an的一个最大公因数,则d也是;a1,a2,,an的两个最大公因数至多相差一个符号.C)性质
TH1.4.3 设d为a1,a2,,an的一个最大公因数,那么t1,t2,,tnZ使得A)定义1.设a,bZ,若dZ使得bad,则称a整除b(或b被a整除).用符号a|b表示.d|a且d|bA)定义2.设a,bZ,dZ,若d满足:1)(即d是a与b的一个公因数);2)若cZdt1a1ta22tnan.略证:若a1a2an0,则d0,从而对tiZ都有0t1a1t2a2tnan;若ai不全为0,由证明过程知结论成立.(2)互素
定义3.设a,bZ,若(a,b)1,则称a,b互素;一般地设a1,a2,,anZ,若(a1,a2,,an)1,则称a1,a2,,an互素.3.素数及其性质
(1)定义4.一个正整数p1叫做一个素数,若除1,p外没有其他因数.(2)性质
1)若p是一个素数,则对aZ有(a,p)p或(a,p)1.(注意转换为语言叙述,证易;略)
2)aZ且a0,1;则a可被某一素数整除.3)TH1.4.5 设p是一个素数,a,bZ,若p|ab,则p|a或p|b.TH1.4.4 n个整数a1,a2,,an互素t1,t2,,tnZ使得t1a1t2a2tnan1.6-
第二篇:高等代数教案第四章线性方程组
第四章
线性方程组
一 综述
线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的.作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法).线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论.二 要求
掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论.重点:线性方程组有解判别法,矩阵的秩的概念及求法.4.1 消元法
一 教学思考
本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法.二 内容要求
主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系.三 教学过程
11x213x2x3151.引例:解方程组x1x23x3
3(1)
32x4x5x21233定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换.2.消元法的理论依据
TH4.1.1初等变换把一个线性方程组变为与它同解的线性方程组(即线性方程组的初等变换是同解变换.)
3.转引
在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因
a11a21Aa12a22a1na2n,则A可经过一系列行初等变换和第一种列初等变换化为如下形式:
am1aam2mn1010001brr1; 000000000000进而化为以下形式:
1000c1r1c1n0100cc2r12n0001crr1crn.其中r0,rm,rn,“”表示不同的元素.0000000000005)用矩阵的初等变换解线性方程组
a11x1对线性方程组:a12x2a1nxnb1ax1a22x2a2nxnb212
(1)am1x1am2x2amnxnbma11a12a1n由定理1其系数矩阵Aaaa21222n可经过行初等变换和列换法变换化为 am1am2amn1000c1r1c1n0100cc2r12n0001crr1crn;则对其增广矩阵 000000000000
y1d1c1r1kr1c1nknydckck22r1r12nn2,这也是(1)的解,由kr1,,kn的任意性(1)有无穷多解.yrdrcrr1kr1crnknyr1kr1ynknx12x23x3x452x4xx3124例1 解线性方程组.x12x25x32x48x12x29x35x421解:对增广矩阵作行初等变换:
23151140132A01252801295210200100001212003213 60013x2xx24122同解,故原方程组的一般解为所原方程组与方程组113x3x42631x2xx42122.131x3x4624.2 矩阵的秩
线性方程组可解判别法
一 教学思考
1.本节在上节消元法对线性方程组的解的讨论的基础上,引入了矩阵的秩的概念,以此来表述有解判定定理,在有解时从系数矩阵的秩与未知数的个数间的关系可讨论解的个数,其中在有无数解时引入了一般解与通解的概念.2.矩阵的秩的概念是一个重要的概念,学生易出问题.定义的表述不易理解,应指出秩是一个数(非负整数)r,其含义是至少有一个r阶非零子式,所有大于r阶(若有时)子式全为0.重要的是“秩”的性质——初等变换下不变,提供了求秩的另一方法——初等变换法.3.本节内容与上一节和下一节互有联系,结论具体,方法规范,注意引导总结归纳.二 内容要求
1. 内容:矩阵的秩、线性方程组可解判定定理
2. 要求:掌握矩阵的秩的概念、求法及线性方程组求解判定定理 二 教学过程
1.矩阵的秩(1)定义
x1x2x31x1x2x3 xxx23124.3 线性方程组的公式解
一 教学思考
1.本节在理论上解决了当线性方程组有解时,用原方程组的系数和常数项将解表示出来——即公式解,结论的实质是克拉默法则的应用.其中过程是在有解判定的基础上选择r个适当方程而得,可归纳方法步骤(方程的选择、自由未知量的选择),内容规范完整,理论作用较大,实用性较小.2.作为特殊的线性方程组——齐次线性方程组的解的理论有特殊的结果,易于叙述和理解,需注意其特殊性(与一般的区别,解的存在性、解的个数等).二 内容要求
1.内容:线性方程组的公式解,齐次线性方程组的解
2.要求:了解线性方程组的公式解,掌握齐次线性方程组的解的结论 三 教学过程
1.线性方程组的公式解
a11x1a12x2a1nxnb1axaxaxb2112222nn2
(1)有解时,用方程组的系数和常数项把解本节讨论当方程组am1x1am2x2amnxnbm表示出来的问题——公式解.处理这个问题用前面的方法——消元法是不行的,因为这个过程使得系数和常数项发生了改变,但其思想即化简得同解线性方程组的思想是重要的,所以现今能否用其它方法把(1)化简得同解方程组且系数和常数项不变,才可能寻求公式解.x12x2x32,(G1)为此看例,考察2x13x2x33,(G2)
(2)
4xxx7,(G)3123显然G1,G2,G3间有关系G32G1G2,此时称G3是G1,G2的结果(即可用G1,G2线性表示).则方程组(2)与x12x2x32(G1)同解.2x3xx3(G)2321同样地,把(1)中的m个方程依次用G1,G2,,Gm表示,若在这m个方程中,某个方程Gi是其它若干个方程的结果,则可把(1)中的Gi舍去,从而达到化简的目的.即现在又得到化简(1)的方法:不考虑(1)中那些是其它若干个方程的结果,而剩下的方程构成与(1)同解的方程组.现在的问题是这样化简到何种程度为止,或曰这样化简的方程组最少要保留原方程组中多少个方程.由初等变换法,若(1)的r(A)r,则可把(1)归结为解一个含有r个方程的线性方程组.同样
TH4.3.1设方程组(1)有解,r(A)r(A)r(0),则可以在(1)中的m个方程中选取r个方程,使得剩下的mr个方程是这r个方程的结果.因而解(1)归结为解由这r个方程组成的方程组.下看如何解方程组:
第三篇:高等代数与高等数学
高等代数与高等数学的区别
高等代数、数学分析是数学专业中更细的数学研究的分类。高等代数是代数方向的究,而数学分析使用极限方法研究函数特性的数学。而高等数学是对非数学专业的人学习的区别于初等数学的数学,应当包括高等代数和数学分析部分。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,例如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。
其研究对象不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。
第四篇:复旦大学2000年高等代数
复旦大学高等数2000
1. 求方阵
101111
110的逆阵。
2. 设A为一个n阶方阵且A的秩等于A的秩。证明A的秩等于A的秩。
3. 设A为一个n阶正交阵,x1,x2,,xn1为一组线性无关的列向量,对于1in1都
有Axixi。如果A的行列式等于1,证明A是单位矩阵。
4. 设n是一个自然数,V是由所有nn实矩阵构成的n2维实向量空间,U和W分别为
由所有nn对称矩阵和反对称矩阵构成的空间。证明VUW,既V是U和W的直和。
5. 设K为一个数域,K[x]为K上以x作为不定元的多项式全体所组成的集合。设23
f(x)g(x)其中f(x),g(x),h(x),q(x)K[x]。假定f(x)q(x)g(x)h(x)是Ah(x)q(x),
K中的一个不等于零的数。证明A可以表示成有限多个以下类型的矩阵的乘积:101s(x)a0r(x)1,01,0b,其中a,b是K中的非零数,而r(x),s(x)K[x].
第五篇:教学大纲-厦门大学高等代数
教学大纲
一. 课程的教学目的和要求
通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。
要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。
二.课程的主要内容:
代数学是研究代数对象的结构理论与表示方法的一门学科。代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。本课程力求突出代数学的思想和方法。
《高等代数》分为两个部分主要内容。一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。《高等代数》从三个角度进行研究。从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan标准形对应的空间分解。而欧氏空间则是具体的研究空间的例子。在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。
本课程力求突出几何直观和矩阵方法的对应和互动。我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。
三.课程教材和参考书:
教材:林亚南编著,高等代数,高等教育出版社,第一版
参考书:1.姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版 2.北京大学数学系编,高等代数,高等教育出版社,北京(1987)3.张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)4.樊恽、郑延履、刘合国,线性代数学习指导,科学出版社,北京(2003)5.林亚南编:高等代数方法选讲,2002年,见厦门大学精品课程“高等代数”网站 四.课程内容及学时分配
本课程开课时间:一学年(共两学期),共170学时,其中课堂讲授122学时,习题讨论课42学时,考试6学时。具体安排为:第一学期,80学时,其中课堂讲授60学时,习题讨论课18学时,半期考2学时;第二学期,90学时,其中课堂讲授62学时,习题讨论课24学时,单元考4学时;以上不包括期末考。课堂讲授有全程教学录像,习题讨论课不录像。
第一章 矩阵(28学时)
1、教学内容:矩阵定义与运算,分块矩阵,行列式的定义,行列式的性质,行列式的基本计算方法,Laplace定理,可逆矩阵,矩阵的初等变换与初等矩阵,矩阵的相抵标准形,矩阵的秩。
2、教学目的和要求:使学生正确掌握矩阵的运算和运算法则,熟练掌握矩阵的初等变换这一矩阵论的核心内容和方法,掌握分块矩阵的运算,掌握矩阵的逆、矩阵的秩,掌握矩阵相抵的等价分类,化标准形的思想方法,理解行列式的归纳法定义,熟练掌握行列式的性质,熟练掌握计算行列式基本方法,了解和应用Laplace定理,了解行列式的等价定义。
3、各节教学时间分配及进度安排:§1数域(1学时);§2 矩阵和运算(3学时);§3分块矩阵(2学时);§4 行列式(6学时);§5 行列式的展开式和Laplace定理(2学时);§6可逆矩阵(2学时);§7 初等变换和初等矩阵(4学时);§8矩阵的秩(2学时);习题讨论课(6学时)。
第二章 线性方程组(14学时)
1、教学内容:数域,列向量的线性关系,向量组的秩,线性方程组解的结构。
2、教学目的和要求:使学生正确理解数域的概念,正确判断和证明列向量的线性关系,掌握证明向量组的秩的命题的方法,熟练掌握线性方程组的解的判断、计算和解的结构。
3、各节教学时间分配及进度安排:§1消元法(2学时);§2 n维列向量(3学时);§3向量组的秩(4学时);§4 线性方程组解的结构(2学时);习题讨论课(3学时)。
第三章 线性空间(14学时)
1、教学内容:线性空间的定义,线性相关性:线性相关和线性无关,线性表示,线性等价的向量组,极大线性无关组,基与维数,基的变换与过渡矩阵,线性空间的同构,子空间的定义与判断,子空间分解,关于子空间的交空间和和空间的维数公式。
2、教学目的及要求:使学生正确理解线性空间的定义,从定义出发正确判断和证明向量组的线性关系,把握一批重要实例的基与维数,掌握计算矩阵的秩的初等变换方法和子式方法,培养学生严谨的逻辑推理能力和准确简明的表达能力,熟悉同构的思想,等价分类的思想,直和分解的思想。
3、各节教学时间分配进度安排:§1线性空间(2学时);§2基和维数(2学时);§3坐标(2学时);§4 子空间(2学时);§5 直和分解(2学时);习题讨论课(4学时)。
第四章 线性映射(22学时)
1、教学内容:线性映射和线性变换,两个线性空间的线性映射(变换)的全体构成集合的代数结构,线性映射与矩阵的同构对应,线性映射的核与像 以及维数公式,线性变换的不变子空间和导出变换。
2、教学目的及要求:使学生准确理解和掌握线性映射(变换)的概念,理解线性映射由基的像唯一确定及其应用;掌握两个线性空间之间的线性映射(变换)的全体在定义了加法、数乘(和乘法)运算后构成线性空间(代数);熟练掌握用核空间与像空间刻画单满线性映射,熟练掌握维数公式;学会在同构意义下线性映射的命题与矩阵的命题之间的转化;学会以上内容在具体例子的实现和计算。
3、各节教学时间分配进度安排:§1映射(2学时);§2 线性映射和运算(4学时);§3 同构(3学时);§4像与核(3学时);§5 线性变换(3学时);§6 不变子空间(2学时);习题讨论(5学时)。
第五章 多项式(24学时)
1、教学内容:一元多项式的概念,多项式的运算,整除的概念与性质,带余除法,最大公因式的唯一性、存在性,Euclidean辗转相除法,互素的性质及判定;中国剩余定理;不可约多项式及其性质,标准分解式,重因式的判定与求法;多项式函数的根,余数定理,根的个数;代数基本定理,复数域上多项式的分解,Vieta定理;实系数多项式的不可约多项式,实系数多项式的分解;有理系数多项式的根,本原多项式,Gauss引理,Eisenstein判别法;多元多项式的基本概念,多元多项式中单项式的排列次序,关于乘积首项和次数;对称多项式,初等对称多项式,对称多项式的基本定理。
2、教学目的及要求:使学生掌握多项式全体作为线性空间的代数结构的运算法则;熟练掌握和应用带余除法定理;熟练掌握最大公因式和互素的判别方法和基本性质;熟练掌握和应用因式分解定理,掌握不可约多项式的基本性质,了解重因式与重根的联系,掌握复系数与实系数的标准分解式,掌握有理系数多项式的Gauss引理,Eisenstein判别法;了解多元多项式与了解多元多项式函数的关系,理解和掌握对称多项式的基本定理和Newton公式。
3、各节教学时间分配及进度安排:§1一元多项式和运算(1.5学时);§2 整除(2学时);§3 最大公因式(2.5学时);§4 标准分解式(2学时);§5 多项式函数(2学时);§6复系数和实系数多项式(1.5学时);§8 有理系数和整系数多项式(2.5学时);§9 多元多项式(1.5学时);§10 对称多项式(2.5学时);习题讨论课(6学时)。第一单元考试(2学时)。
第六章 特征值(16学时)
1、教学内容:特征值和特征向量,特征多项式及其性质,特征值、特征向量的求法;复方阵相似于上三角阵及其应用;矩阵可对角化的判定和计算,特征子空间,特征值的代数重数、几何重数,完全特征向量系;零化多项式和极小多项式,Cayley-Hamilton定理。
2、教学目的及要求:使学生掌握特征值、特征向量、特征多项式、特征子空间、极小多项式的定义和基本性质;清楚零化多项式和极小多项式的关系,掌握Cayley-Hamilton定理;熟练掌握计算特征值与特征向量,可对角化的判定和计算。
3、各节教学时间分配及进度安排:线性空间线性映射知识回顾(4学时);§1 特征值和特征向量(3学时);§2 可对角化(2.5学时);§3 极小多项式(2.5学时);习题讨论课(4学时)。
第七章 相似标准形(22学时)
1、教学内容:多项式矩阵和矩阵多项式,λ-矩阵的相抵,初等λ-矩阵;λ-矩阵的法式;矩阵的行列式因子,不变因子,初等因子;不变因子和Frobenius型;初等因子和Jondan小块,矩阵相似的全系不变量;Jordan标准形:Jordan 标 准形对应的不变子空间分解;根子空间,循环子空间。
2、教学目的及要求:使学生了解多项式矩阵与矩阵多项式的关系,λ-矩阵的相抵与矩阵相似的关系.掌握行列式因子、不变因子、初等因子的概念与计算,掌握不变因子与Frobenius型的对应,初等因子组与Jordan标准形的对应,Jordan 标准形对应的不变子空间分解。
3、各节教学时间分配及进度安排: §1 λ-矩阵的法式(2学时);§2 特征矩阵(1.5学时);§3 不变因子和Frobenius标准形(2.5学时);§4 初等因子组和广义Jordan标准形(2学时);§5 Jordan标准形(2学时);§6 Jordan 标准形的进一步讨论(6学时);习题讨论课(6学时)。第二单元考试(2学时)。
第八章 欧氏空间(14学时)
1、教学内容:内积和内积空间的概念,向量的长度,夹角,平行和正交,Cauchy-Schwarz不等式,三角不等式;单位向量,正交基,标准正交基,标准正交基的过度矩阵,Schmidt正交化,正交补空间,度量矩阵,Bessel不等式;正交变换与正交阵的判别及性质;正交相似,对称变换的性质,实对称矩阵正交相似的全系不变量,实对称矩阵的正交相似标准形。
2、教学目的及要求:使学生掌握欧氏空间的度量概念与度量性质,掌握正交相似关系,掌握正交变换和正交矩阵的对应,对称变换与对称矩阵的对应,从矩阵的正交相似关系进一步熟练掌握等价分类的思想。
3、各节教学时间分配进度安排:§1内积和欧氏空间(1学时);§2标准正交基(4.5学时);§3 对称变换和对称矩阵(0.5学时);§4 正交变换和正交矩阵(4学时);习题讨论课(4课时)。
第九章 二次型(10学时)
1、教学内容:二次型与对称矩阵的对应,二次型的非退化线性替换与对称阵的合同关系;二次型化简的配方法和初等变换法;复二次型的规范标准形,惯性定理,正惯性指数,负惯性指数,符号差,实二次形的规范标准形;正定型与正定矩阵;半正定型与半正定阵、负定型与负定阵。
2、教学目的及要求:使学生掌握用非退化线性替换,化二次型为标准形和规范形,掌握判断二次型的正定性的方法,从对称矩阵的合同关系理解等价分类的思想。
3、各节教学时间分配进度安排:§1二次型与矩阵的合同(2学时);§2规范形(1.5学时);§3正定二次型(2.5学时);习题讨论课(4学时)。