第一篇:人教版九年级数学下册教案:29.2 三视图第3课时 由视图确定几何体的表面积和体积
第3课时 由视图确定几何体的表面积和体积
教学目标 知识与技能
1.了解立体图形的概念.
2.会利用三视图计算立体图形的侧面积和表面积. 过程与方法 通过观察、探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系.
情感、态度与价值观
1.了解将三视图转换成立体图形的生产生活中的应用,使学生体会到所学知识主要的实用价值.
2.进一步体会三视图的应用价值,提高学习数学的兴趣,提高空间想象能力. 重点难点 重点
利用三视图想象立体图形. 难点
画出立体图形的展开图并进行有关的计算. 教学过程
一、创设情境,导入新课
1.前面我们分别学习了由实物画出的三视图和由三视图想象出实物图形这两个方面的内容,现在我们将应用本节知识解决实际生活中的一些问题.
2.如图,是一个用铁皮做的圆锥形容器(无底)的三视图和圆锥体,你能根据左视图中所给尺寸计算出制造一个这样的圆锥形容器所需的扇形铁皮的面积吗?
教师多媒体出示图片,引导学生思考.
二、合作交流,探究新知
根据下列几何体三视图,画出它们的表面展开图:
解:(1)该物体是:______; 画出它的展开图是:(2)该物体是:______; 画出它的展开图是:
【合作探究】某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积.
问题:要想求出每个密封罐所需钢板的面积,应先解决哪些问题? 小组讨论.
结论:1.应先由三视图想象出物体的______; 2.画出物体的____________; 解:该物体是:______ 画出它的展开图是: 它的表面积是:
三、运用新知,深化理解
例1 已知如图为一几何体的三视图:(1)写出这个几何体的名称;
(2)若从正面看长为10 cm,从上面看圆的直径为4 cm,求这个几何体的侧面积(结果保留π).
分析:(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据几何体的尺寸确定该几何体的侧面积即可.
解:(1)该几何体是圆柱;
(2)∵从正面看长为10 cm,从上面看圆的直径为4 cm,∴该圆柱的底面直径为4 cm,高为10 cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).
方法总结:解题时要明确侧面积的计算方法,即圆柱侧面积=底面周长×圆柱高. 例2 如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.
分析:先由三视图得到两个长方体的长,宽,高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.
解:根据三视图可得:上面的长方体长6 mm,高6 mm,宽3 mm,下面的长方体长10 mm,宽8 mm,高3 mm,这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=268+108=376(mm2). 答:这个几何体的表面积是376 mm2.方法总结:由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律—“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.注意:求解组合体的表面积时重叠部分不应计算在内.
例3 杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8 g/cm3,1 kg防锈漆可以涂4 m2的铁器面,三视图单位为 cm)?
分析:从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.
解:∵工件的体积为(30×10+10×10)×20=8000 cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800 cm2=0.28 m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).
方法总结:本题主要考查了由三视图确定几何体和求几何体的体积、面积;关键是由三视图可知几何体的形状,从而得到所求的等量关系的相对应的值.
四、课堂练习,巩固提高 1.教材P100-101练习. 2.请同学们完成《探究在线·高效课堂》“随堂测评”内容.
五、反思小结,梳理新知 本节学了哪些内容,你有哪些认识和收获?还有什么疑惑?说给老师和同学听听.学生归纳、总结、发言、体会、反思.
六、布置作业
1.请同学们完成《探究在线·高效课堂》“课时作业”内容. 2.教材P103习题29.2第10题.
第二篇:数学:23.2中心对称(第3课时)教案(人教新课标九年级上)
23.2 中心对称
(第三课时)
教学内容
1.中心对称图形的概念.
2.对称中心的概念及其它们的运用.
教学目标
了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.
复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.
重难点、关键
1.重点:中心对称图形的有关概念及其它们的运用.
2.难点与关键:区别关于中心对称的两个图形和中心对称图形.
教具、学具准备
小黑板、三角形
教学过程
一、复习引入
1.(老师口问)口答:关于中心对称的两个图形具有什么性质?
(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
关于中心对称的两个图形是全等图形. 2.(学生活动)作图题.
(1)作出线段AO关于O点的对称图形,如图所示.
AO
(2)作出三角形AOB关于O点的对称图形,如图所示.
AOB(2)延长AO使OC=AO,延长BO使OD=BO,连结CD 则△COD为所求的,如图所示.
二、探索新知
从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.
上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.
∵AO=OC,BO=OD,∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD
ADOBC 也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.
因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.
老师点评:老师边提问学生边解答.
(学生活动)例2:请说出中心对称图形具有什么特点?
老师点评:中心对称图形具有匀称美观、平稳.
例3.求证:如图任何具有对称中心的四边形是平行四边形.
AODBC
分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.
证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形.
三、巩固练习
教材P72 练习.
四、应用拓展
例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.
分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.
解:连接AF,∵点C与点A重合,折痕为EF,即EF垂直平分AC.
∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩形,∠B=90°,AB=CD=3,AD=•BC=4 设CF=x,则AF=x,BF=4-x,由勾股定理,得AC2=BC2+AB2=52 ∴AC=5,OC=12AC=52
∵AB2+BF2=AF2 ∴
32+(4-x)=2=x2 ∴x=258
∵∠FOC=90°
∴OF2=FC2-OC2=(255228)2-(2)=(158)OF=
158
同理OE=158,即EF=OE+OF=
154
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.中心对称图形的有关概念; 2.应用中心对称图形解决有关问题.
六、布置作业
1.教材P74 综合运用5 P75 拓广探索8、9
第三篇:数学:23.2中心对称(第2课时)教案(人教新课标九年级上)
23.2 中心对称(第二课时)
教学内容
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
教学目标
理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.
复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.
重难点、关键
1.重点:中心对称的两条基本性质及其运用.
2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.
教学过程
一、复习引入
(老师口问,学生口答)
1.什么叫中心对称?什么叫对称中心? 2.什么叫关于中心的对称点?
3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.
(每组推荐一人上台陈述,老师点评)
(老师)在黑板上画一个三角形ABC,分两种情况作两个图形
(1)作△ABC一顶点为对称中心的对称图形;
(2)作关于一定点O为对称中心的对称图形.
第一步,画出△ABC.
第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.
(1)(2)从图1中可以得出△ABC与△A′B′C是全等三角形;
分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.
下面,我们就以图2为例来证明这两个结论.
证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′
∴△AOB≌△A′OB′
∴AB=A′B′
同理可证:AC=A′C′,BC=B′C′
∴△ABC≌△A′B′C′
(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.
同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.
因此,我们就得到
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.
分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.
解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.
(2)同样画出点B和点C的对称点E和F.
(3)顺次连结DE、EF、FD.
则△DEF即为所求的三角形.
例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).
二、巩固练习
教材P70 练习.
四、归纳小结(学生总结,老师点评)
本节课应掌握:
中心对称的两条基本性质:
1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分; 2.关于中心对称的两个图形是全等图形及其它们的应用.
五、布置作业
1.教材P74 复习巩固1 综合运用6、7.
1.下面图形中既是轴对称图形又是中心对称图形的是()
A.直角 B.等边三角形 C.直角梯形 D.两条相交直线 2.下列命题中真命题是()A.两个等腰三角形一定全等
B.正多边形的每一个内角的度数随边数增多而减少 C.菱形既是中心对称图形,又是轴对称图形 D.两直线平行,同旁内角相等
3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()
A.60° B.50° C.75° D.55°
第四篇:人教版数学六年级下册 第2课时 圆锥的体积 教案
第3单元 圆柱与圆锥
第2课时 圆锥的体积(1)
【教学目标】
1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
【教学重难点】
重难点:
1、理解圆锥体积公式的推导过程。
2、计算圆锥的体积。【教学过程】
一、问题引入
1、提出问题。
出示一个铅锤,并提问:你有办法知道这个铅锤的体积吗?
2、揭示课题。
这节课我们一起来探究圆锥体积的计算方法。(板书课题:圆锥的体积)二.新知探究
1、教学例2。
(1)回忆圆柱体积计算公式的推导过程,(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
(3)实验探究
拿出等底等高的圆柱和圆锥各一个,先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(4)讨论探究。
(5)引导归纳。圆锥的体积是和它等底等高的圆柱的体积的
三、巩固练习
1、完成教材第34页“做一做”第1题。
2、完成练习六的第1~6题。
第五篇:数学:23.1图形的旋转(第3课时)教案(人教新课标九年级上)
23.1 图形的旋转(第三课时)
教学内容
选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.
教学目标
理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.
复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.
重难点、关键
1.重点:用旋转的有关知识画图. 2.难点与关键:根据需要设计美丽图案.
教具、学具准备
小黑板
教学过程
一、复习引入
1.(学生活动)老师口问,学生口答.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗? 2.请同学独立完成下面的作图题.
如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.
(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.
二、探索新知
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究. 1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.
因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.
分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.
解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.
(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.
(4)按菊花一叶图案画出各菊花一叶.
那么所画的图案就是绕O点旋转后的图形.
例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?
老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.
三、巩固练习
教材P65 练习.
四、应用拓展
例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.
分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.
解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;
(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;
(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;
(4)所作出的图案就是所求的图案.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;
2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.
六、布置作业
1.教材P67 综合运用7、8、9.
1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.
2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.
3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.