核心概念—几何直观—勾股定理应用教学设计

时间:2019-05-15 05:15:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《核心概念—几何直观—勾股定理应用教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《核心概念—几何直观—勾股定理应用教学设计》。

第一篇:核心概念—几何直观—勾股定理应用教学设计

体现核心概念之“几何直观”教学设计

《勾股定理的应用》教学设计

内容:八年级下(人教版)§17.1勾股定理的应用之一 教学目标:

1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。

2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。

3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。重点:勾股定理的应用 难点:勾股定理的灵活应用。方法:讲练结合 教学过程: 一:课前复习

师:勾股定理的内容是什么? 生:勾股定理 直角三角形两直角边的平方和等于斜边的平方.师:这个定理为什么是两直角边的平方和呢? 生:斜边是最长边,肯定是两个直角边的平方和等于斜边的平方,否则不正确的。

师:是这样的。在RtΔABC中,∠C=90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。

今天我们来看看这个定理的应用。二:新课过程

师:上面的探究,先请大家思考如何做?(留几分钟的时间给学生思考)师:看到这个题让我们想起古代一个笑话,说有一个人拿一根杆子进城,横着拿,不能进,竖着拿,也不能进,干脆将其折断,才解决了问题,相信同学们不会这样做。

(我略带夸张的比划、语气,学生笑声一片,有知道这个故事的,抢在我的前面说,学生欣欣然,我观察课堂气氛比较轻松,这也正是我所希望氛围,在这样的情况下,学生更容易掌握知识)师:这里木板横着不能进,竖着不能进,只能试试将木板斜着顺进去。师:应该比较什么? 张伟:这是一块薄木板,比较AC的长度,是否大于2.2就可以了。师:张伟说的是正确的。请大家算出来,可以使用计算器。解:在RtΔABC中,由题意有: AC==

≈2.236 ∵AC大于木板的宽 ∴薄木板能从门框通过。学生进行练习1:

1、在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90゜.①已知a=5,b=12,求c;②已知a=20,c=29,求b(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)

2、如果一个直角三角形的两条边长分别是3厘米和4厘米,那么这个三角形的周长是多少厘米?(学生先做,挑优秀学生再提问)

师:对第二问有什么想法? 生:分情况进行讨论。师:具体说说分几种情况讨论? 生:①3cm和4cm分别是直角边;②4cm是斜边,3cm是直角边。

师:呵呵,你们漏了一种情况,还有3cm是斜边,4cm是直角边的这种情况。众生(顿感机会难得,能有一次战胜老师的机会哪能放过):啊!斜边应该大于直角边的。这种情况是不可能的。

师:你们是对的,请把这题计算出来。(学生情绪高涨,为自己的胜利而高兴)(这样处理对有的学生来说,印象深刻,让每一个地方都明白无误)解:①当6cm和8cm分别为两直角边时;斜边==10 ∴周长为:6+8+10=24cm ②当6cm为一直角边,8cm是斜边时,另一直角边周长为:6+8+=2=14+2

师:如图,看上面的探究2。师:请大家思考,该如何去做? 陈晓玲:运用勾股定理,已知AB、BO,算出AO的长度,又∵A点下滑了0.4米,再算出OC的长度,再利用勾股定理算出OD的长度即可,最后算出BD的长度就能知道了。

师:这个思路是非常正确的。请大家写出过程。有生言:是0.4米。

师:猜是0.4米,就是想当然了,算出来看看,是不是与你的猜测一样。(周飞洋在黑板上来做)解:由题意有:∠O=90°,在RtΔABO中 ∴AO=

=2.4(米)又∵下滑了0.4米 ∴OC=2.0米 在RtΔODC中 ∴OD=∴外移BD=0.8米 答:梯足将外移0.8米。

=1.5(米)师:这与有的同学猜测的答案一样吗? 生:不一样。

师:做题应该是老老实实,不应该想当然的。例3 再来看一道古代名题:

原题:“今有池,方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何?”

师:谁来翻译? 生:现在有一个正方形的池子,一株芦苇长在水中央,露出水面的部分为一尺,拉芦苇到岸边,刚好与搭在岸上„„

师:我觉得“适与岸齐”翻译得不达意,应该理解为芦苇与水面与岸的交接线的中点上。

生:老师,我也认为是刚好到岸边,“齐”就是这个意思的。

师:这是字表面的意思,古人的精炼给我们今天的理解带来了困难,如果照同学们的翻译,这题就无解了,这理的理解应该是芦苇与水面同岸的交接线的中点上,而且还要求不左偏右倒。

(与学生进行争论,能够让师生双方对这个问题都有更深刻的印象,我是欢迎学生们发表自己的见解)师:正方形的池子,如何理解? 生:指长、宽、高都相等。

师:呵呵!照你们的看法,应该说成是正方体,而不应该是正方形了?再想想,池子的下方是什么形? 生:照这样说来,下面是其它形状也可以啊!师:我也这样认为,再来具体的说说正方形池子指什么? 生:仅指池口是正方形。

师:是这样的。(用粉笔盒口演示给学生看)有生:一丈10尺是指什么? 师:我也正想问这个问题呢,谁能来解答? 生:指AD的长度。师:能指BC的长度吗? 生:不能,刚说的其下方是不能确定的。我们整理翻译一下,“现在有一个贮满水的正方形池子,池子的中央长着一株芦苇,水池的边长为10尺,芦苇露出水面1尺。若将芦苇拉到岸边,刚好能达到水池岸与水面的交接线的中点上。请求出水深与芦苇的长各有多少尺? 师:如何画出草图?

(留给学生几分钟画出图,然后给出草图)师:请大家思考如何进行计算?(留几分钟的时间给学生思考)师:刚才有一部分同学已经做出来了,但还有约一半的同学还未能做出来。师:没做出来的同学,请思考你是不是遇到了EF与FD两个未知数啊,一是想想1尺有什么用;二是如何把两个未知数变成一个未知数,当然也可以多列一个方程。

(再等一等学生,留时间让他们做出来,这里等一等所花费的时间,对中等与中等偏下的同学是极为有利的,这点时间的付出会得到超值回报的)解:由题意有:DE=5尺,DF=FE+1。设EF=x尺,则DF=(x+1)尺 由勾股定理有:x2+52=(x+1)2 解之得:x=12 答:水深12尺,芦苇长13尺。生:这题的关键是理解题意。

师:看来还很会点评嘛,属于当领导的哦!(开个善意的玩笑,教室中一片温馨的笑声)。审题,弄清题意也是我们做题的首要的关键的一环,用同学们的总结来说,以后遇到难题不要怕,要敢于深入进去,弄清情景。学生练习2:

1、校园内有两棵树,相距12米,一棵树高16米,另一棵树高11米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?(自己画图解答,答案13米)

2、(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:楼高多少米?

三:小结 利用勾股定理解决应用题关键是根据题意画出草图,找出其中的直角三角形,抓住斜边,利用勾股定理求出结果 作业:长江作业本《勾股定理一》 板书

第二篇:几何直观是数学新课程标准里提出的核心概念之一

几何直观是数学新课程标准里提出的核心概念之一,标准里提出几何直观主要是指利用图形描述和分析问题,借助它可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。学生的思维水平正处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。“数无形不直观,形无数难入微”,“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。借助“形”的直观,能促进学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。以下通过《线段射线直线》这一课谈谈如何发展学生的几何直观:

一、让学生在主动参与中获取对图形的认识教学中关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,在学生积极主动的参与学习中。

二、重视对学生识图、作图能力培养 图形是几何的灵魂,识图、作图更是学习几何最基本的素养,在讲授线段射线直线表示是亲自示范,强调图形名称及细节和注意,让学生在实际问题中动手去作图,同桌之间互相纠正,比一比谁画的更好,学生们在画图时无形会更加认真、标准,在彼此纠正过程再次巩固基本的画图方法,一举两得。

三、利用利用多媒体信息技术 多媒体技术除了给学生展现丰富多彩的图形世界外,也多了一条解决问题的途径。学生在动手探究过一点有多少条直线时,虽然发现有无数条直线这一结论,但多媒体为学生展示其不易想像的图形,扩大其空间视野,真正体会过一点有无数条直线。

四、利用几何直观培养学生思考问题的能力。平面几何的许多性质、定义等学生很难记忆清楚,通过指导学生利用图形来记忆就比较容易解决问题,同时培养学生用图形的意识。几何直观能力是利用图形生动形象地描述数学问题,直观地反映和揭示思考、讨论问题的思路,揭示丰富多彩的数学思想。培养学生几何直观能力,不仅是新教材的要求,也是提高学生数学素质的要求,同时借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。

第三篇:勾股定理的应用教学设计

1.3勾股定理的应用

备课人:闫治春 【教学目标】

1.经历把立体问题转化为平面问题,体会图形间的变化关系,发展空间观念。2.在实际情境中应用勾股定理,认识勾股定理的广泛应用,培养学生解决问题的能力。【教学重点】

探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。【教学难点】

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。【教学过程】

一、课前预习

学生自学课本P13内容回答下面的问题:

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。即:. 2.勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系: a2+b2= c2,那么这个三角形是.

二、课内探究:

(一)预习导学 在中,∠A、∠B、∠C所对的边分别为a、b、c,且(a+b)(a-b)=c2则此三角形的形状为,∠A=度。

(二)自主探究

如图所示,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(n的值取3)

(l)自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?

(2)如图所示,将圆柱侧面剪开展成一个长方形,从A点到B点的最短路线是什么?你画对了吗?

(3)蚂蚁从A点出发,想吃到B点上的食物,求它沿圆柱侧面爬行的最短路程。

(三)研讨交流

如图,长方体的长为4厘米,宽为2厘米,高位8厘米,若一蚂蚁从顶点A沿长方体表面爬到点G处吃食,要爬行的最短路程是多少?

(四)达标测评

1.甲、乙两位探险者到沙漠进行探险.某日早晨 8:00甲先出发,他以6千米/时的速度向东行走.1时后乙出发.他以5千米/时的速度向北行进.上午10:00,甲、乙二人相距多远?

2.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少?

(五)总结拓展 1.本节课你学到了什么?

2.如图,有一个高1.5米,半径是1米的圆柱形油桶,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒在靠近边的地方有一小孔应有多长?

三、课后巩固

A(必做):课本第14页:习题1.5第1.2题。B(选做):课本P14问题解决3, 4。【教学反思】

第四篇:《勾股定理的应用》教学设计

《勾股定理的应用》教学设计

【教学目标】

1、知识与技能目标

能运用勾股定理及直角三角形的判定条件解决实际问题.2、能力达成目标

(1)会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。(2)发展学生的分析问题能力和表达能力。

3、情感态度目标

(1)在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。

(2)积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。

【教学重点】勾股定理及直角三角形的判定条件的应用(在应用中概括出这两者在应用方面的区别,增强这两个定理的区分和应用能力)【教学难点】分析思路,渗透数学思想

【学情分析】学生已经学习了勾股定理、直角三角形的判定条件、平面展开图等知识,具备了应用勾股定理及直角三角形的判定条件的基本能力,但对无理数缺乏“形”的认识,需要提高勾股定理及直角三角形的判定条件的综合应用的能力,因此,本节课着重培养学生对无理数缺乏“形”的认识,对勾股定理及直角三角形的判定条件的综合应用的能力。通过本节课的学习,能够对勾股定理及直角三角形的判定条件进行综合应用。【教具准备】多媒体电脑 【教学过程】

(一)创设情景,引入新课;

引入华罗庚提出的:把勾股定理送到外星球,与外星人进行数学交流,„„。来激发学生对勾股定理学习的乐趣

(二)引入实例,体会勾股定在现实生活中的作用,体现数学来源于现实生活

如放映的:可爱的小鸟、帮一帮消防员、电视的大小问题,这些都是现实生活中体现勾股定理应用的很好的例子。进而引入勾股定理的应用。

(三)实战濱示

生活中路径最短问题转化为几何中的解直角三角形问题,即勾股定理的应用。先演示在长方体中,小蚂蚁吃农食物这个情境问题,在分析问题的过程中由学生讨论分析会出现几种情况,最后师生共同总结,合作完成,不但很好地应用了勾股定理,而且还巩固了把几何体展开为平面图形的知识,体现了数形结合的数学思想。

(四)变式训练 把长方体转化成圆柱,爬的路径由半周到一周,让学生自行完成,然后讨论结果的正确性。(五)轻松一分钟

观看图片,聪明的葛藤,让学生引发联想植物的聪明性,进而引入更深一点的问题,还是体现数学来源于现实生活,由看到的问题引出实际要解决的问题。(六)深度挖掘

由绕一圈到两圈,最后提出问题:到多圈该怎么处理?学生课后自行讨论完成。给学生以自己思考的空间,体现不同的学生在数学上有不同的发展。

(七)练习,以上面的形式分层次出现

(八)感悟与反思(让学生来小结本节课的内容):

1、通过这节课的学习活动你有哪些收获?

2、对这节课的学习,你还有什么想法吗?

(九)作业:见卷子

(十)紧扣主题,观看给出的勾股定理的应用的图片,体会本节课的教学内容,以及勾股定理在现实生活中的具大作用。

第五篇:借助几何直观 凸显有效教学

借助几何直观 凸显有效教学

几何直观是《义务教育数学课程标准(2011版)》提出的数学课程十大核心概念之一,主要是指“利用图形描述和分析数学问题。”“借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”从过程而言,它与文字、数字、符号、表格等相区别,主要体现在“利用图形”;从结果来说,“不同的学生具有不同的几何直观水平”,是一种静态能力与数学素养的反应。

小学生的思维水平正处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。培养和发展学生的几何直观能力,成为小学数学教育中的一个备受关注的问题,以下是我在教育教学过程中关于几何直观的一些思考与探究。

一、几何直观有利于把抽象的数学概念直观化,帮助学生理解概念 学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知识、建构概念、解决问题,就相当于在原有的知识基础上添砖加瓦,新知识的学习就变得更简单。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果。

我们经常借助实物、点子图、计数器、未画完整的直尺、数轴让学生直观感知,例如在一年级上册中,学生刚开始学习数学知识时,教材首先就是通过数与物(形)的对应关系,初步建立起数的基本概念,认识数,学习数的加减法;通过具体的物(形)帮助学生建立起初步的比较长短、多少、高矮等较为抽象的数学概念;通过图形的认识与组拼,在培养学生初步的空间观念的同时,也初步培养学生的数形结合的思想,帮助学生把数与形联系起来,数形有机结合。在以后的学习中,随着学生年龄的增长,思维能力的不断提高,数与形的结合就更加广泛与深入。从学生的思维活动过程来看,在这个片段中,学生经历了由具体到抽象的思维过程,经历了由一般到特殊的思维过程,把抽象的数学概念直观地呈现在学生面前,帮助学生理解和掌握数的基本概念。

二、几何直观使计算中的算式形象化,帮助学生理解算理 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。

在低年级时,有些较复杂的实际问题用“几何直观”的方法来帮助分析题意,学生才容易理解。比如有这样一个问题,“妈妈买来一些桃,上午吃了一半,下午又吃了剩下的一半,盘里还剩下3个,妈妈原来买了多少个桃?”。一些学生对逆向思考的数量关系难以理解,教学时教师可以用正方形画图来表示问题意思,帮助学生理解题意。(如图)

有了这个直观图形的支撑,学生很容易推想原来桃子的个数,3×2=6个,6×2=12个。

在低年级的教学中,教师要有意识引导学生学会看懂图示语言,体会到示意图的既简洁又形象,容易找到解决问题的思路的优点,让学生对图示语言产生好感和画图的愿望,培养“几何直观”的意识。

再如三年级教学“平均数”时,可以利用条形统计图,直观理解移多补少的方法,理解平均数的意义。又如“两位数除以一位数”的笔算除法算理,就是让学生通过摆小棒,理解线平均分整捆的小棒,所以要从被除数的最高位除起。这样学生就能明白为什么要这样计算,而不是被动的接受,死记硬背。

在利用直观图解决数学问题时,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。几何直观的培养应伴随推理能力的发展,贯穿在整个小学数学学习过程中。

三、应用几何直观,提高学生的能力

几何直观的思想是重要的数学思想,其实质是使数量关系和空间形象巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把这种思想更好地反映出来。通过图形的直观性质来阐明数与数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓学生的解题思路,为研究和探求数学问题开辟了一条重要的途径。

简单的排列和组合题,也可借助直观的图形,在很好的解决数学问题的同时也培养了学生的推理能力。此外在植树问题中,借助线段图向学生直观展示非封闭路线植树相关概念和类型(间隔、间隔数、两端要栽、只载一端、和两端不载)

倒推问题中借助“几何直观”来分析也很有效。五年级学习用倒推法解决的实际问题特点很明显,学生往往知道要用倒推的策略,但较复杂的倒推问题在分析时,学生却不容易理解其中的数量关系,容易导致思路的混淆。所以教会学生画倒推示意图来分析题意尤为重要。比如,“小明原来有一些邮票,今天有收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?”

画出这种方框加箭头的图更加容易理解,思路一目了然。我们可以看出几何直观通过数形结合的思想在小学数学的很多知识领域的可以帮助学生启迪思路,理解数学。

几何直观,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,充分展现问题的本质,帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点发展学生的思维。实践证明,抽象的数学概念和复杂的数量关系,借助图形使之形象化、直观化、简单化,有助于提升学生解决问题的能力,同时还有助于培养学生的符号意识、模型思想,提升学生的数学素养。

总之,教师要从数学发展的全局着眼,从具体的教学过程着手,有目的、有计划地进行渗透几何直观思想的教学,使学生逐步形成数形结合思想,并使之成为学习数学、解决数学问题的工具,这是我们小学数学教学努力追求的目标。

下载核心概念—几何直观—勾股定理应用教学设计word格式文档
下载核心概念—几何直观—勾股定理应用教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中学数学核心概念教学设计

    中学数学核心概念、思想方法教学设计框架结构 中学数学核心概念、思想方法教学设计由如下栏目组成: (1)内容和内容解析;(2)目标和目标解析;(3)教学问题诊断分析;(4)教学支持条件分析;(5)教......

    培养几何直观能力的教学思考

    《全日制义务教育数学课程标准(修改稿)》提出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。几何直观主要是指利用图形描述和分析数学问......

    勾股定理教学设计

    勾股定理 目标认知 学习目标: 掌握勾股定理及其逆定理.能够比较熟练地运用勾股定理,由已知直角三角形中的两条边长,求出第三条边长,会用勾股定理的逆定理判定一个三角形是不是直......

    勾股定理教学设计

    《勾股定理》教学设计 古敢水族乡中学:徐祥林 教学目标 : 1、知识目标: (1)掌握; (2)学会利用进行计算、证明与作图; (3)了解有关的历史. 2、能力目标: (1)在定理的证明中培养学生的拼图能......

    勾股定理教学设计

    勾股定理教学设计 学情分析 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。本节是直角三角形相关知识的......

    《勾股定理》教学设计

    《勾股定理》教学设计 一、内容和内容解析 本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:2002年北京召......

    《勾股定理》教学设计

    《勾股定理》教学设计案例 地址:山东省临朐县柳山镇柳山初级中学 邮编:262616 姓名:侯永成 电话:05363430215 一、教学目标 知识技能:了解勾股定理的文化背景,体验勾股定理的探索......

    勾股定理教学设计

    勾股定理教学设计 教材分析: 勾股定理是九年制义务教育课程标准实验教科书八年级下册第十章七的内容。勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量......