第一篇:函数的可导性与连续性的关系教案
函数的可导性与连续性的关系教案
教学目的
1.使学生理解函数连续是函数可导的必要条件,但不是充分条件.
2.使学生了解左导数和右导数的概念.
教学重点和难点
掌握函数的可导性与连续性的关系.
教学过程
一、复习提问
1.导数的定义是什么?
2.函数在点x0处连续的定义是什么?
在学生回答定义基础上,教师进一步强调函数f(x)在点x=x0处连续必须具备以
∴f(x)在点x0处连续.
综合(1)(2)原命题得证.
在复习以上三个问题基础上,直接提出本节课题.先由学生回答函数的可导性与连续性的关系.
二、新课
1.如果函数f(x)在点x0处可导,那么f(x)在点x0处连续.
∴f(x)在点x0处连续.
提问:一个函数f(x)在某一点处连续,那么f(x)在点x0处一定可导吗?为什么?若不可导,举例说明.
如果函数f(x)在点x0处连续,那么f(x)在该点不一定可导.
例如:函数y=|x|在点x=0处连续,但在点x=0处不可导.从图2-3看出,曲线y=f(x)在点O(0,0)处没有切线.
证明:(1)∵ Δy=f(0+Δx)-f(0)=|0+Δx|-|0|=|Δx|,∴函数y=|x|在点x0处是连续的.
2.左导数与右导数的概念.
(2)左、右导数存在且相等是导数存在的充要条件(利用左右极限存在且相等是极限存在的充要条件,可以加以证明,本节不证明).
(3)函数在一个闭区间上可导的定义.
如果函数y=f(x)在开区间(a,b)内可导,在左端点x=a处存在右导数,在右端点x=b处存在左导数,我们就说函数f(x)在闭区间[a,b]上可导.
三、小结
1.函数f(x)在x0处有定义是f(x)在x0处连续的必要而不充分条件.
2.函数f(x)在x0处连续是f(x)在x0处有极限的充分而不必要条件.
3.函数f(x)在x0处连续是f(x)在x0处可导的必要而不充分的条件.
四、布置作业
作业解答的提示:
=f(1).
∴ f(x)在点x=1处连续.
∴ f(x)在x=1处不可导.
第二篇:函数极限与连续教案
第四讲
Ⅰ 授课题目(章节)
1.8:函数的连续性
Ⅱ 教学目的与要求:
1、正确理解函数在一点连续及在某一区间内连续的定义;
2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的、基本初等函数在定义域内是连续的;
5、了解初等函数的和、差、积、商的连续性,反函数与复合函数的连续性; 6 掌握闭区间上连续函数的性质
教学重点与难点:
重点:函数在一点连续的定义,间断点,初等函数的连续性
难点:函数在一点连续的定义,闭区间上连续函数的性质
Ⅳ 讲授内容:
一 连续函数的概念函数的增量
定义1设变量u从它的初值u0变到终值u1,终值与初值之差u1u0,称为变量u的增
量,或称为u的改变量,记为u,即uu1u0
xx1x0
yf(x0x)f(x0)函数的连续性
定义2 设函数yf(x)在点x0的某个邻域内有定义,若当自变量的增量x趋近于零
时,相应函数的增量y也趋近于零,即
limy0或 x0
x0limf(x0x)f(x0)0
则称函数f(x)在x0点连续
2例1 用连续的定义证明y3x1在点x02处是连续的证明 略
若令xx0x则当x0时,xx0又yf(x0x)f(x0)即
f(x)f(x0)y故y0就是f(x)f(x0)
因而limy0可以改写成limf(x)f(x0)x0xx0
定义3 设函数yf(x)在点x0的某个邻域内有定义,若
xx0limf(x)f(x0)
则称函数f(x)在x0点连续
由定义3知函数fx在点x0连续包含了三个条件:
(1)fx在点x0有定义
(2)limf(x)存在xx0
(3)limf(x)f(x0)xx0
sinx,x0例2 考察函数f(x)x在点x0处得连续性
1,x0
解略
3左连续及右连续的概念.定义4 若limf(x)f(x0),则函数f(x)在x0点左连续 xx0
若limf(x)f(x0),则函数f(x)在x0点右连续 xx0+
由此可知函数f(x)在x0点连续的充分必要条件函数f(x)在x0点左连续又右连续
4、函数在区间上连续的定义
(a,b)(a,b)定义5 若函数f(x)在开区间内每一点都连续,则称函数f(x)在开区间内连
续
(a,b)若函数f(x)在开区间内连续,且在左端点a右连续,在右端点b左连续,则
称称函数f(x)在闭区间a,b上连续
(-,+)例3 讨论函数yx在内的连续性
解 略
二 函数的间断点定义6函数f(x)不连续的点x0称为函数f(x)的间断点
由定义6可知函数f(x)不连续的点x0有下列三种情况
(1)fx在点x0没有定义
(2)limf(x)不存在xx0
(3)limf(x)f(x0)xx0
2间断点的分类
左右极限都相等(可去间断点)第一类间断点:左右极限都存在间断点 左右极限不相等(跳跃间断点)
第二类间断点:左右极限至少有一个不存在
x21,x0例4考察函数f(x)在x0处得连续性
0,x0
解 略
例5考察函数f(x)
解 略
1,x0例6考察函数f(x)x在x0处得连续性
0,x0x,x0x1,x0在x0处得连续性
解 略
三 连续函数的运算与初等函数的连续性
1、连续函数的和、差、积、商的连续性
2、反函数与复合函数的连续性
3、初等函数的连续性:基本初等函数在它们的定义域内都是连续的.一切初等函数在其定义区间内都是连续的.对于初等函数,由于连续性xx0limf(x)f(x0),求其极限即等价于求函数的函数值
四闭区间上连续函数的性质
定理1(最大值最小值定理)
若函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小值
定理2(介值定理)
若函数f(x)在闭区间a,b上连续,m 和M分别为f(x)在a,b上的最小值和最大值,则对于介于m 和M之间的任一实数C,至少存在一点a,b,使得
f()C
定理3(零点定理)
若函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则至少存在一点a,b,使得f()0
例7 证明x52x20在区间(0,1)内至少有一个实根 证明 略
Ⅴ 小结与提问:
Ⅵ 课外作业:
习题1-8 2,5,7,9
第三篇:函数极限与连续
函数、极限与连续
一、基本题
1、函数f
xln6x的连续区间ax2x2x
12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axb
a-1,b
41sin2x
3、limx2sin-2x0xx
4、n2x4/(√2-3)k
5、lim1e2,则k=-1xx
x2axb5,则a3,b-
46、设limx1x
17、设函数fx2xsinx1,gxkx,当x0时,fx~gx,则k
ex2x0
8、函数fx2x10x1的定义域R ;连续区间(-oo,1),(1,+oo)3x1x1
1xsinx
a9、函数fx1xsinbxx0x0在x0处连续,则a1,b1x010、函数fxe
1e11
x1x的间断点为x=0,类型是 跳跃间断点。
11、fx,yx2y2xycosx,则f0,1ft,1y12、fxy,xyx2y2,则fx,yy^2+x13、函数zln
2x2y2的定义域为 {(x,y)|1
14、1e2xylim-12;x,y0,0x2y2exyx,y0,01x2y2x2y2lim
3-12;lim12xyx15、x0
y0
二、计算题
1、求下列极限
(1)0
0型:
1)limexex2x
x0xsin3x;=0
2)limexx
1x0x1e2x;=-1/
43)limtan3xln12x
x01cos2x;=-
34)limtanxsinx
x0xsin2x2;=1/4
(2)
型:
1)lnsin3x
xlim0lnsin2x=1
lim2n13n1
2)n2n3n=3
(3)型:
1)lim11
x0xex1=1/
22)lim
x111x1lnx=-1/2
3)xlimarccosx=π/3
4)xlimx=-1 x0y2
(4)0型:
1)limxarctanx=1x2
2)limx1tanx1x2=-π/2
(5)1型:
21)lim1xx3x2=e^(-6)
4x23x12)limx3x2
3)lim12xx0 =e^(-4)=e^(2/5)1sin5x
14)limcos=e^(-1/2)xx
(6)00型:1)limxsinx=1 x0x2
方法:lim x^sinx=lim e^(sinxlnx)
公式:f(x)^g(x)=e^(g(x)ln(f(x)))
(7)型:1)limx20x
x1x=2
同上
2、已知:fxsin2xln13x2limfx,求fx x0x
f(x)=(sin2x)/x+ln(1-3x)+
2(方法:两边limf(x)x->0)
x2x3、求函数fx的间断点,并判定类型。2xx1驻点x=0,x=1,x=-
11)当x=0+时,f(x)=-1;当x=0-时,f(x)=1 跳跃间断点
2)当x=1时,f(x)=oo;第二类间断点
3)当x=-1时,f(x)=1/2;但f(-1)不存在,所以x=-1是可去间断点
sin2xx
4、设函数fxa
ln1bx1e2xx0x0在定义域内连续,求a与b x0
Lim sin(2x)/x|x->0-=2=a=b/-2=>a=2,b=-
45、证明方程:x33x29x10在0,1内有唯一的实根。(存在性与唯一性)证明:
1)存在性:
令f(x)=x^3-3x^2-9x+1
f(0)=1>0;
f(1)=-10<0;
因为f(0).f(1)<0所以在(0,1)内存在一个实根
2)唯一性
f’(x)=3x^2-6x-9=3(x+1)(x-3)
所以f(x)在(0,1)内为单调减函数
故x33x29x10在0,1内有唯一的实根。
第四篇:多元函数的极限与连续
数学分析
第16章
多元函数的极限与连续
计划课时:
0 时
第16章
多元函数的极限与连续(1 0 时)
§ 1
平面点集与多元函数
一.平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.余集Ec.1.常见平面点集:
⑴
全平面和半平面 : {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa},{(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域: X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集
{(x,y)|0|xx0| , 0|yy0|}的区别.3. 点与点集的关系(集拓扑的基本概念):
(1)内点、外点和界点:
内点:存在U(A)使U(A)E
集合E的全体内点集表示为intE,.外点:存在U(A)使U(A)E
界点:A的任何邻域内既有E的点也有不属于E的点。E的边界表示为E
集合的内点E, 外点E , 界点不定.例1 确定集E{(x,y)|0(x1)(y2)1 }的内点、外点集和边界.例2 E{(x,y)|0yD(x), x[ 0 , 1 ] } , D(x)为Dirichlet函数.确定集E的内点、外点和界点集.(2)(以凝聚程度分为)聚点和孤立点:
聚点:A的任何邻域内必有属于E的点。
孤立点:AE但不是聚点。孤立点必为界点.例3 E{(x,y)|ysin }.确定集E的聚点集.解
E的聚点集E[ 1 , 1 ].221x 2 4.区域:
(1)(以包含不包含边界分为)开集和闭集: intE E时称E为开集 , E的聚点集E时称E为闭集.intE 存在非开非闭集.(3)有界集与无界集:
(4)
点集的直径d(E): 两点的距离(P1 , P2).(5)
三角不等式:
|x1x2|(或|y1y2|)或(P1,P2)R2和空集为既开又闭集.(2)(以连通性分为)开区域、闭区域、区域:以上常见平面点集均为区域.(x1x2)2(y1y2)2 |x1x2||y1y2|.(P1,P3)(P2,P3)
二.R2中的完备性定理:
1. 点列的极限:
设Pn(xn , yn)R2, P0(x0 , y0)R2.PnP0的定义(用邻域语言)
定义1。
limn0,N,nNPnU(P0,)或(P0,Pn)
例4(xn , yn)(x0 , y0)xnx0, yny0,(n).例5 设P0为点集E的一个聚点.则存在E中的点列{ Pn }, 使limPnP0.n
2.R2中的完备性定理:
(1)Cauchy收敛准则:
.(2).闭域套定理:(3).聚点原理: 列紧性 ,Weierstrass聚点原理.(4)有限复盖定理:
三.二元函数:
1.二元函数的定义、记法、图象:
2.定义域: 例6 求定义域:
ⅰ> f(x,y)3.二元函数求值: 例7 例8 9x2y2x2y21;ⅱ> f(x,y)lny.2ln(yx1)yf(x,y)2x3y2, 求 f(1 , 1), f(1 ,).xf(x,y)ln(1x2y2), 求f(cos , sin).4.三种特殊函数: ⑴ 变量对称函数: f(x,y)f(y,x),例8中的函数变量对称.⑵ 变量分离型函数: f(x,y)(x)(y).例如
zxye2x3y, zxy2xy2, f(x,y)(xyy)(xyx)等.(xy)2 4 但函数zxy不是变量分离型函数.⑶ 具有奇、偶性的函数
四.n元函数
二元函数 推广维空间 记作R n
作业 P9—8.§ 2 二元函数的极限
一.二重极限
二重极限亦称为全面极限
1.二重极限
定义1 设f为定义在DR上的二元函数,P0为D的一个聚点,A是确定数 若 0,0,或
2PU0(P0,)D,f(P)A则limf(P)A
PP0(x,y)(x0,y0)limf(x,y)A
例1 用“”定义验证极限
(x,y)(2,1)lim(x2xyy2)7.xy20.例2 用“”定义验证极限 lim2x0xy2y0例3 x2y2,(x,y)(0,0),xyf(x,y)x2y2
0 ,(x,y)(0,0).f(x,y)0.(用极坐标变换)
P94 E2.证明
(x,y)(0,0)lim2.归结原则:
定理 1
limf(P)A,
对D的每一个子集E , 只要点P0是E的聚点 , PP0PD就有limf(P)A.PP0PE
推论1
设E1D, P0是E1的聚点.若极限limf(P)不存在 , 则极限limf(P)也不存在.PP0PE1PP0PD
推论2
设E1,E2D, P0是E1和E2的聚点.若存在极限limf(P)A1,PP0PE1PP0PE2limf(P)A2, 但A1A2, 则极限limf(P)不存在.PP0PDPP0PD
推论3
极限limf(P)存在, 对D内任一点列{ Pn }, PnP0但PnP0, 数列{f(Pn)}收敛.通常为证明极限limf(P)不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限PP0不相等, 或证明极限与方向有关.但应注意 , 沿任何方向的极限存在且相等 全面极限存在
例4 xy ,(x,y)(0,0), 证明极限limf(x,y)不存在.f(x,y)x2y2(x,y)(0,0)0 ,(x,y)(0,0).6 例二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>
(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>
3.极限(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxy(x,y)(x0,y0)limf(x,y)的定义:
2定义2.设f为定义在DR上的二元函数,P0为D的一个聚点,若 M0,0,或
PU0(P0,)D,f(P)M则limf(P)
PP0(x,y)(x0,y0)limf(x,y)
其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3y二.累次极限
二次极限
1.累次极限的定义:
定义3.设Ex,EyR,x0,y0分别是Ex,Ey的聚点,二元函数f在集合ExEy上有定义。若对每一个yEyyy0存在极限limf(x,y)
记作(y)limf(x,y)
xx0xExx0xE若Llim(y)存在,则称此极限为二元函数f先对x后对y的累次极限
yy0yEy记作Llimlim(y)
简记Llimlim(y)
yy0xx0yEyxExyy0xx0例8 f(x,y)xy, 求在点(0 , 0)的两个累次极限.x2y2 7 例9 x2y2, 求在点(0 , 0)的两个累次极限.f(x,y)22xy11ysin, 求在点(0 , 0)的两个累次极限.yx例10 f(x,y)xsin2.二重极限与累次极限的关系:
⑴ 两个累次极限存在时, 可以不相等.(例9)⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1在点(0 , 0)的情况.y
⑶ 二重极限存在时, 两个累次极限可以不存在.例如例10中的函数, 由 , y)(0,0).可见全面极限存在 , 但两个累次极限均不存在.|f(x,y)| |x||y|0 ,(x
⑷ 两个累次极限存在(甚至相等)
二重极限存在.(参阅例4和例8).综上 , 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.定理2 若二重极限
推论1 二重极限和两个累次极限三者都存在时 , 三者相等.推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 二重极限不存在.但两个累次极限中一个存在 , 另一个不存在
二重极限不存在.参阅⑵的例.(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在 , 则必相等.xx0yy0
作业提示: P99 1、2、4
§ 3 二元函数的连续性(4 时)
一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:
定义
用邻域语言定义相对连续.全面连续.函数f(x,y)有定义的孤立点必为连续点.例1 xy22 , xy0 ,22xy
f(x,y)m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例2
f(x,y)
([1]P124 E4)0 , 其他.证明函数f(x,y)在点(0 , 0)沿任何方向都连续 , 但并不全面连续.函数的增量: 全增量、偏增量.用增量定义连续性.函数在区域上的连续性.2.二元连续(即全面连续)和单元连续 :
定义
(单元连续)
二元连续与单元连续的关系: 参阅[1]P132 图16—9.3.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.仅证复合函数连续性.二.二元初等函数及其连续性:
二元初等函数 , 二元初等函数的连续性.三.一致连续性: 定义.四.有界闭区域上连续函数的性质:
1.有界性与最值性.(证)
2.一致连续性.(证)
3.介值性与零点定理.(证)
Ex
[1]P136—137 1 ⑴—⑸,2,4,5;
P137—138
1,4.10
第五篇:二元函数的极限与连续
§2.3 二元函数的极限与连续
定义 设二元函数有意义, 若存在 常数A,都有
则称A是函数
当点
趋于点
或 或趋于点
时的极限,记作
。的方式无关,即不,当
(即)时,在点的某邻域
内 或 必须注意这个极限值与点论P以什么方
向和路径(也可是跳跃式地,忽上忽下地)趋向分接近, 就能 使
。只要P与 充与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多
种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。
图8-7
同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限
在该点
存在,但不相等, 则可以判定元函数极限不 存在的重要方法之一。
极限不存在。这是判断多 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二元函数极
限理论中都适用,在这里就不一一赘述了。例如
若
有, 其中。
求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理
来计算。例4 求。
解由于 , 而,根据夹逼定理知
,所以。
a≠0)。
解 例5 求
(。例6 求。解
由于理知
且,所以根据夹逼定
.例7 研究函数在点处极限是否存在。
解 当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于
(0,0)的极限,有值,可得到不同的极 限值,所以极限
不存在,但 ,。很显然,对于不同的k。注意:极限方式的 的区别, 前面两个求本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的
极限,我们称为求二重极限。
例8 设函数极限都不存在,因 为对任何,当
时,。它关于原点的两个累次
的第二项不存在极限;同理对任何 时, 的第 一项也不存在极限,但是因此。
由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存
在,但二个累次极限不存在。我们有下面的结果: 定理1 若累次极限都存在,则
三者相等(证明略)。推论 若但不相等,则二重极限
不
存在和二重极限, 由于, 存在。定义 设
在点的某邻域内有意义,且称函数,则
在点
处
连
续,记
上式称为函数(值)的全增量。则。
定义
增量。
为函数(值)对x的偏二元函数连续的定义可写为
偏增量。若断点, 若
在点
为函数(值)对y的处不连续,则称点
是的间在某区域
在区域G上连续。若
在闭区域GG上每一点都连续,则称的每一内点都连 续,并在G的连界点
处成立 , 则称为连续曲面。在闭域G上连续。闭域上连续的二元函数的图形称 关于一元函数连续的有关性质, 如最值定理、介值定理、Cantor定理,对于
二元函数也相应成立。可以证明如下的重要结果:
定理2 设
在平面有界闭区域G上连续,则(1)必在G上取到最大值,最小值及其中间的一切值;(2),当
时,都有
。以上关于二元函数的在G上一致连续,即
极限和连续的有关性质和结论在n元函数中仍然成立。