第一篇:面面平行的判定教案
平面与平面平行的判定
一、教材分析
1.1教材所处地位与作用
本节课是人教版数学必修(2)第二章第二节第2课内容——平面与平面平行的 判定。本节课是在学生学习了线线、线面关系后,已具有一定的空间几何知识和一定的数学能力和方法的基础上进行的。两个平面平行的判定定理是立体几何中的一个重要定理。它揭示了线线平行,线面平行,面面平行的内在联系,体现了转化的思想。通过本课的学习不仅能进一步培养学生的空间想象能力,逻辑推理能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习习近平面与平面的垂直打下基础。
1.2 教学重点、难点
1.2.1 教学重点
平面与平面平行的判定定理的理解
1.2.2 教学难点
平面与平面平行的判定定理的应用(新教材将线面平行的性质安排在面面平行的判定之后,使得定理无法用理论推理来完成。因此,我采用观察感知,操作发现的研究方法来解决这一难点。通过讨论加深印象,设计更多的例子练习直线与直线的平行。)
根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:
1.3目标分析
1.3.1 知识技能目标
1、了解面面平行判定定理的发现过程。
2、理解证明过程必须的三个条件。
3、运用定理进行证明和解决生活中有关的实际问题。
1.3.2 过程与方法
1、学生通过观察、探究、思考,得出两平面平行的判定定理,体验如何把语言文字描述为数学符号。
2、通过问题的提出与解决,培养学生探究问题、解决问题的能力。通过对例题的
1推证,培养学生观察、归纳、猜想、论证的能力。进一步增强学生空间想象能力、空间问题平面化的思想。1.3.3 情感态度价值观
1、通过主动参与探究活动,体验在科学发现中获得成功的喜悦,体验生活中的数 学美,激发学习兴趣,养成勇于开拓和创新的科学态度。
2、在师生对图形分析的过程中,培养学生积极进行教学交流,乐于探索创新的科学精神。
3、通过同学之间讨论、互动,培养互帮互助的合作精神。
二、教法、学法
2.1 教法
美国心理学家布鲁纳指出:“探索是数学教育的生命线”。遵循“教必须立足于学”的教学理念,为了立足于学生思维发展,着力于知识构建在教法上我采用启发式讲解法。通过采用提出疑问,引导学生自主思考、探索通过直观感知、操作确认逐步发现平面与平面平行判定的方法,加深对判定定理的理解。通过问题探究激发学生学习的积极性和创造性,让学生分享到探索知识的方法和乐趣。2.2 学法
以学生观察实践、自主探究、合作交流为主要形式的启发式讲解法。强调动脑思考,动手操作,亲身体验,注重多感官参与,多心理能力的投入,通过教师在教学过程中的点拨,启发学生自主探究来达到对知识的发现与领悟。
三、教学设计
3.1 教材
普通高中课程标准实验教科书人教A版必修2 3.2 教学目标
知识与技能:理解平面与平面平行的判定定理,并会初步运用。过程与方法:主动地去获取知识、发现问题并解决问题
情感态度与价值观:进一步培养观察、发现的能力及空间想象能力 3.3 教学重点
平面与平面平行的判定定理的理解 3.4 教学难点
平面与平面平行的判定定理的应用 3.5 教学用具
多媒体教学设备 3.6 教学方法
启发式讲解法
3.7 板书设计
3.8 教学过程
第二篇:面面平行判定定理教案
2.2.2面面平行的判定
教材:普通高中课程标准实验教科书人教A版必修二
教学目标
一、知识与技能
1.理解面面平行判定定理并初步应用;
2.化归与转化思想在解决实际问题中的应用。
二、过程与方法
1.体会“类比”的数学思想;
2.经历面面平行定理的证明过程,体验反证法的过程.三、情感态度与价值观
引导学生反思新旧知识间的联系,促进学生养成善于联系的思考问题,从实
际生活中获知数学知识。
教学重点
面面平行的判定定理及其应用
教学难点
面面平行判定定理的由来及其证明
教辅手段
黑板,PPT
教学过程
一、问题导入:
复习线面平行的判定方法,引入本节课的课题
二、新知探究
1、两平面的位置关系(借助PPT),引导学生发现两平面的位置关系——即平行和相交;
2、教师提问:如何能判别两平面平行呢?显然当一个平面内的所以直线都和另
一个平面不相交时,两平面平行。
教师总结:这个问题告诉我们,判定两平面平行问题,可以证明一个平面内的所有直线与另一个平面平行,即面面平行转化为线面平行,但要证明所有直线
和另一个平面平行是很困难的。
教师提问:同学们思考一下,能否将“所有直线:化为有代表性的”一条“或”
几条直线“呢?
3、学生探究(以长方体模型为例):
(1)平面内有一条直线与平面平行,,平行吗?
(2)平面内有两条直线与平面平行,,平行吗?
4、经过观察讨论解决问题
(PPT)定理:一个平面内有两条相交直线都平行于另一个平面,那么这两个平
面平行.
5、教师分析并书写证明过程。
三、理解应用:
例1:如图,已知正方体ABCD-EFGH,求证:平面AEG平行于平面BDF
证明:ABCDEFGH为正方体
GF//HE,GFHE.又AB//HE,ABHE,GF//AB,GFAB,ABFG是平行四边形.AG//BF.又AG平面BDF,BF平面BDF
由直线与平面平行的判定定理得
AG//平面BDF,同理GE//平面BDF,又AGEGG,平面AEG//平面BDF.四、课堂练习:
必做题:课本58页1、3选做题:课本58页
2五、归纳提升:
1、两个平面的位置关系:相交、平行
2、判定两个平面平行的方法:
1)使用“两个平面互相平行”的定义
2)两平面平行的判定定理
3、数学思想方法:
转化的思想
六、课后延续
1.回顾本课的学习过程,整理学习笔记,正确运用面面平行判定定理;
2.完成书面作业:必做教材61页3;5。
选做教材61页8
七.板书设计
第三篇:面面平行判定(导学案)
2.2.2平面与平面平行的判定(导学案)
编制人:lh
学习目标:
1.知识与技能:理解并掌握平面与平面平行的判定定理及应用
2.过程与方法:通过感知、举例、类比、探究、归纳出判定定理
3.情感价值观:进一步陪养解决空间问题平面化的思想
学习重点:平面与平面平行的判定 学习难点:面面平行判定定理的应用
一、复习与思考
1.我们学习过两种判断线面平行的方法:
(1)定义法:
(2)直线与平面平行的判定定理:
条件:关键:
思想:
找平行线的方法有:
2.两个平面有几种位置关系?请画图说明:
3.观察你的周围,请举出面面平行的具体例子:
二、合作探究
问题
1提示:将面面平行转化为......问题2思考在下列4种情况下,α∥β是否成立。(请举例说明理由)
(1).若平面α内有一条直线a平行于平面β,能保证α∥β吗?
(2).若平面α内有两条直线a、b都平行于平面β,能保证α∥β吗?
-“学习的三大要素是接触、综合分析、实际参与。”-----名人名言
(3).如果平面α内的无数条直线都平行于平面β,则α∥β吗?
(4).如果平面α内的任意直线都平行于平面β,则α∥β吗?
三、面面平行的判定定理
根据探究结果,对照线面平行的判定定理,请尝试归纳出面面平行的判定定理: 定理内容:图形表示
符号表示:
简述为:
定理再理解
1.正确运用定理需要
2.定理用到的数学思想:
3.运用定理的关键是:
四、定理的应用
定理初应用
例1如图:三棱锥P-ABC,D,E,F分别是棱PA,PB,PC中点,求证:平面DEF∥平面ABC。D
E
A
B
变式1:若把例1中的“D,E,F分别是棱PA,PB,PC中点”改为“
结论是否依旧成立?请口述原因。
F C PDDAPEEBPFFC”,定理再应用
例2在正方体ABCD-A1B1C1D1中.求证:平面AB1D1∥平面C1BD.D
1A1
D C1 1 C
变式2:若把例2中的“正方体”改为“长方体”,结论是否依旧成立?请口述原因。
方法小结(请总结出证明两个平面平行的一般步骤):
五、达标检测
1.已知α、β是两个平面,在下列条件中,可判断α∥β的是()
(A).l,m,l//,m//(B).l,m,l//m
(C).l//,m//,l//m(D).l,m异面,l ,m,l//,m// 2.已知直线a//平面,过直线a作平面,使//,这样的,()
(A).只能作一个(B).至少可以作一个(C).不存在(D).至多可以作一个
3.已知α∥β,a,b,则a与b的位置关系是()
(A).平行(B).异面(C).相交(D).平行或异面
4.已知正方体ABCD-A1B1C1D1,P,Q,R,分别为A1A,AB,AD的中点。
求证:平面PQR∥平面CB1D1.Q
六、小结与反思
1.通过本节课的学习,判断平面与平面平行的方法有:
2.应用判定定理判定面面平行时应注意:
3.应用判定定理判定线面平行的关键:
4.找平行线的方法有:
5.本节课我们用到的数学思想与方法:
第四篇:面面平行的判定学案
平面与平面平行的判定学案
一、复习引入:
问题1:空间两个平面有几种位置关系?
问题2:如何来定义两个平面相交和平行?
二、探索学习:
探究
(一):平面与平面平行的背景分析
思考:假定平面//,那么对于平面内的任意一条直线m,它同平面有什么关系? 反过来,我们能否用线和面的平行关系来判定面与面的关系呢?
探究(二):平面与平面平行的判断定理
问题1:若平面内有一条直线m//,能否判定//?为什么?
问题2:若平面内有两条直线m、n,m//,n//,能否判定//?为什么?(画出反例图)
问题3:将平面内有两条直线m、n限制为两条相交直线,情况又怎样?
写出面面平行的判定定理的三种语言。即:
文字语言:图形语言
符号语言:
三、理论应用:
例1:课本P57 例题
2变式
如图,在长方体ABCDA1B1C1D1 中,求证:面AC//面A1C1。D11 A 1
1AB
四、自主学习
1.下列说法正确的是().A.一条直线和一个平面平行,它就和这个平面内的任一条直线平行
B.平行于同一平面的两条直线平行
C.如果一个平面内的无数条直线平行于另一个平面,则这两个平面平行
D.如果一个平面内任何一条直线都平行于另一个平面,则这两个平面平行
2.在下列条件中,可判断平面α与β平行的是().A.α、β都平行于直线l
B.α内存在不共线的三点到β的距离相等
C.l、m是α内两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β
3.下列说法正确的是().A.垂直于同一条直线的两条直线平行B.平行于同一个平面的两条直线平行
C.平行于同一条直线的两个平面平行D.平行于同一个平面的两个平面平行
4.经过平面外的两点作该平面的平行平面可以作().A.0个 B.1个C.0个或1个 D.1个或2个
5.不在同一直线上的三点A,B,C到平面α的距离相等,且Aα,则().A.α∥平面ABCB.△ABC中至少有一边平行于α
C.△ABC中至多有两边平行于αD.△ABC中只可能有一条边与α平行
6.已知直线a、b,平面α、β, 且a// b,a//α,α//β,则直线b与平面β的位置关系为.7.已知a、b、c是三条不重合直线,、、是三个不重合的平面,下列说法中: ⑴ a∥c,b∥ca∥b;⑵ a∥,b∥a∥b; ⑶ c∥,c∥∥;⑷ ∥,∥∥; ⑸ a∥c,∥ca∥; ⑹ a∥,∥a∥.其中正确的说法依次是.五、小结:
1.证明平面与平面平行的方法
2.数学思想方法
六、作业: P62习题2.2A组:7,8基础训练2.2.2
第五篇:学案 面面平行的判定
平面与平面平行的判定
一、学习目标:
1、理解平面与平面平行的判定定理的含义,会用定理证明面面平行。
2、会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理。
二、学习重点、难点
学习重点:平面与平面平行判定定理及应用。
学习难点:平面与平面平行的判定定理的探究发现及其应用
三、自主学习:
知识探究(一):平面与平面平行的背景分析
思考1:根据定义,判定平面与平面平行的关键是什么?
思考2: 若一个平面内的所有直线都与另一个平面平行,那么这两个平面的位置关系怎样?若一个平面内有一条直线与另一个平面有公共点,那么这两个平面的位置关系又会怎样呢?
思考3:三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗?
思考4:三角板的两条边所在直线分别与桌面平行,三角板所在平面与桌面平行吗?
思考5:一般地,如果平面α内有一条直线平行于平面β,那么平面α与平面β一定平行吗?如果平面α内有两条直线平行于平面β,那么平面α与平面β一定平行吗?
知识探究(二):平面与平面平行的判定定理
思考1:对于平面α、β,你猜想在什么条件下可保证平面α与平面β平行?
思考2:设a,b是平面α内的两条相交直线,且a//β,b//β.在此条件下,若α∩β=l,则直线a、b与直线l 的位置关系如何?
平面与平面平行的判定定理:
图形语言:
符号语言:
思考3:在直线与平面平行的判定定理中,“a∥α,b∥β”,可用什么条件替代?由此可得什么推论?
推论 :
知识探究(三):平面与平面平行的判定定理的应用
例1 如图 已知 正方体ABCD-A1B1C1D1求证:平面AB1D1∥平面C1BD.D1C
1A1
C
变式训练:已知正方体ABCD-A1B1C1D1,P、Q、R分别为A1A、AB、AD的中点.求证:平面PQR∥平面CB1D1.学习小结:
课堂检测:
1、课本P58练习1、2、32、判断下列命题是否正确:
(1)如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.()
(2)如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行.()
(3)一个平面内两条不平行的直线都平行于另一个平面,则//.
(4)如果一个平面内任意一条直线平行于另一个平面,那么这两个平面平行.()
2、直线l//平面,直线m//平面,直线l与m相交与点P,且l与m确定
平面为,则与的位置关系是
A.相交B.平行C.异面D.不确定
4.经过平面外两点可作该平面的平行平面的个数为()
(A).0(B).1(C).0 或 1(D).1或 2
课后反思: