第一篇:数学史(第11章发展中的现代纯粹数学)
二十世纪数学的序曲—希尔伯特问题
1900 巴黎国际数学家大会
二十世纪数学发展的三大活动
纯粹数学的扩展
空前广泛的应用
计算机与数学的相互影响
二十世纪是攻克数学难题的英雄世纪
一.希尔伯特23个问题
二.与19世纪相比,20世纪以来纯粹数学的发展表现出以下的特性或趋势:
(1)更高的抽象
(2)更强的统一性
(3)更深入的基础探讨
(1)后面两个特性在本质上也属于抽象化,所以,本章的重点还是谈20世纪以来纯粹数学中的高度抽象化。勒贝格积分与实变函数论,抽象代数,几何观念之变革,泛函分析,分维几何,拓扑学,公理化概率论(科尔莫哥罗夫1933年《概率论基础》出版)(2)数学的统一化微分拓扑与代数拓扑.整体微分几何,代数几何,多复变函数论,动力系统,偏微分方程与泛函分析,随机分析菲尔兹奖沃尔夫奖(3)对基础的深入探讨集合论悖论.罗素的悖论是:以M表示是其自身成员 的集合(如一切概念的几何仍是一个概念)的集合,N表示不是其自身成员的集合(如所有人的集合不是一个人)的集合。然后问:集合N是否为它自身的成员?如果N是它自身的成员,则N属于M而不属于N,也就是说N不是它自身的成员;另一方面,如果N不是它自身的成员,则N属于N而不属于M,也就是说N是它自身的成员。无论出现哪一种情况,都将导出矛盾的结论。
三大学派: 逻辑主义——代表人物罗素,直觉主义——代表人物布劳威尔,形式主义 ——代表人物希尔伯特
哥德尔不完全性定理(1931)(1)任一足以包含自然数算术的形式系统,如果是相容的,则它一定存在有一个不可判定命题,即存在某一命题A 使A 与A 的否定在该系统中皆不可 证.(2)在真的但不能由公理来证明的命题中,包括了这些公理是相容的(无矛盾的)这一论断本身.
第二篇:数学史与数学教育
第三节 数学史与数学教育
数学是历史地形成的。只有懂得历史,才能深刻理解数学。法国伟大的数 学家亨利·庞加莱曾说: “如果我们想要预测数学的未来,那么适当的途径是研究这门学科的历史和现状。”近几年来,我国数学教育改革中,强调数学的文化价值,致使数学史知识得到广泛的关注。《高中数学课程标准》把“数学史选讲”作为一门选修课加以开设,进一步推动数学史和数学教学的融合。
一、数学史对数学教育的作用
经过几十年的不懈努力,在数学教学中使用数学史,现在已经相当普及。各种教材都有关于数学史的材料。数学史对数学教育的作用主要有以下四个方面。
第一、帮助理解数学。
数学家发现数学的时候,是火热地思考着的。一旦研究完毕,呈现在我们面 前的则是冰冷的美丽形式。教师的工作是要揭开这层形式化外衣来显现数学本质,让学生体会到数学的内涵。
当然,完成这项工作有许多途径,应该说所有这些途径都属于教学方法范畴之内。但从数学历史的角度来把握数学本质也是其中的一种有效的途径。正如医生给病人看病,询问病人的病史是一个不可或缺的环节一样,理解数学也要知道它的发生、变化和发展的历史全过程,才能透析出隐藏于其中的数学内涵。
一个明显的例子是古希腊的演绎几何。为什么古希腊人要用公理化方法展开数学?他们所处的时代背景如何?中国古代数学的特点和古希腊数学的特征有何不同?弄清这些问题,对学生理解古希腊的演绎几何学,体会其中的理性精神和人文主义价值十分重要。
再如,西周时期的商高在解释勾股定理的来源时,提到“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”其中明确地指出“矩”是一个最为根本的数学概念,它可以产生“方”(正方形),进一步可以产生与圆有关的数学知识(古代有“环矩以为圆”的说法),所以他认为只要对“矩”加以不同方式的变形(即折矩)就能衍生出新的数学关系(如勾股定理)。这是一个把握中国古代数学思想的典型例子。因此,如若我们经常仔细品思这些数学历史素材,则定会“遂悟其意”,进而更为深刻地理解数学本质,形成全面、正确的数学观。
第二、提高数学的宏观认识。
数学教师的任务不仅要把书本上的东西说清楚,还要对数学发展的来龙去脉有清楚的认识。一个优秀的教师,不仅要授人以业,还要授人以法,进而授人以道。教师要掌握这些“法”和“道”,必须宏观地理清数学发展的脉络,深入数学的本质。对于进行数学创新来说,数学史研究更具有指引的作用。数学史中记载了许多数学家发明发现的生动过程,向学生介绍这些过程,有助于学生理解掌握创造的方法、技巧,从而增强其创造力。如公元263年,刘徽对我国古籍《九章算术》的注释中提出了计算圆周长的“割圆”思想,刘徽本人精辟的论述: “割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣!”这些生动的描写,对后人是一种创新激励。
第三、数学史能够为数学教学设计提供一定的指导
数学历史可以把古人的思维与现今学生的思维作一番比较,共通的规律是什么?不同的特点又是什么?进而帮助设计数学教学。
例如,商高对矩形加以折叠(或者分割),叫做折矩(或者割矩),即把矩形沿对角线分割。然后“环而共盘”,叫做拼盘。如此一割一拼,不仅道出了复杂(直角三角形边的关系)源于简单(矩形)的深刻道理,同时给出了勾股定理的一个巧妙而简洁的证明。
上述方法可直接用于勾股定理的教学,更重要的是其中蕴涵的思想(如简单与复杂的辨证关系,追求简洁的表达形式,讲究策略与方法等)对数学教学具有重要的启示意义。
第四、数学历史能够凸现数学的文化价值
数学教材内容中的一个数学定理,或一个数学公式,其背后就是一位人物、一种思想、一种品格或一种精神。前者是静态的,是“冰冷的美丽”,后者是活 2 生生的,是“火热的思考”。但要想透过“冰冷的美丽”,看到“火热的思考”背后的精神动态,数学历史便是最好的选择。笛卡儿主张“我思故我在”,打破欧氏几何的局限,创立解析几何的故事; 欧拉著作等身,勤奋创作的精神,费马创立微分学思想、研究概率论、提出数论中的“费马大定理”,到300年后才完满解决。这些绚丽多彩历史故事,永远是激励后人进行数学创新的动力。
我们常说,读历史其实就是读人物,就是读人物的内心世界,品人物的人格 魅力和精神风范。一个数学历史人物的事迹也许会让某一个人因此而喜欢上了数学,甚至走上了探索数学奥秘之路。充分介绍中国现代数学家的贡献,激励意义更为直接。华罗庚、陈景润、苏步青等名家的事迹对青少年是很大的鼓舞。此外对当代世界数学有重大贡献的华裔数学大师陈省身等的名字也应该在中学数学课程中出现。感人至深的包头五中物理教师陆家羲的数学献身精神,同样是进行思想教育的良好材料。当我们品味出数学之中人文精神的底蕴,触摸到数学历史人物的情感、操行、思想和精神,并与之在思想上、精神上进行交流与汇合的时候,将会感召我们的心灵、激励我们的行动。此时,学生的人文感怀也就油然而生。
二、培养数学历史素养的途径
要想实现数学历史的数学教育价值,挖掘数学历史的数学教育功能,首先要提高教学设计者的数学历史素养,能够从简约的数学史叙述中看到其中的科学价值与人文精神。
首先,数学史要宏观把握。常常看到一些教材中的数学史介绍,只是提供 一位数学家的画像,配以简历,说明做了“伟大”贡献就结束。这就太潦草了。宏观地把握各个时代的文化特征,才能起到教育作用。以勾股定理来说,如果仅仅了解它是什么时候发现的,由谁发现的,在中国叫商高定理,而在西方叫毕达哥拉斯定理等等,那就只看到了一些皮毛。只有进行东西方数学文化的比较,看到古人的思考过程和理性精神,那才能感染学生。
其次,数学史知识要运用细节。
运用数学史知识进行数学教学,如能关注数学历史发展中的细微之处,往往可以探得数学文化之精妙。例如,勾股定理为什么曾经又被称为陈子定理呢?因为《周髀算经》记载了陈子用勾股定理推算地球与太阳的距离以及太阳的直径。3 这就表明中国古代数学文化的一大特色是追求实用价值。数学教学应该继续发扬这种精神,但是也要防止以实用为唯一追求的狭隘做法。
又如,“勾广三,股修四,径隅五”(或“勾三,股四,弦五”),反映了中国古代数学形式化、符号化进程缓慢的特点。相比于古希腊,毕达哥拉斯虽然也是从古埃及的“黄金三角形”(即边长分别为3,4,5或6,8,10的直角三角形)发现勾股定理的,但很快过度到符号化的一般表示。此外,毕达哥拉斯也可能是受启于古巴比伦的勾股数(即一组可以构成直角三角形三边的数,现在我们也称勾股数3,4,5为毕氏三数)。从3,4,5到勾股数是一个重要的数学进展。
再次,数学史知识要适当引申。数学是一种文明,要从数学历史中获得联系性的启示,融会贯通,才能充分发挥教育效能。
仍以勾股定理为例,要从早先的勾股定理,延伸到刘徽、赵爽的“勾股术”并引申到费尔马大定理;既要看到商高的证明,也要看到刘徽的证明,还要看到欧几里得的证明以及美国总统加菲尔德对勾股定理的多种证明;既要看到“环而共盘”,又要看2002年第24届国际数学家大会的会标图案;既要看到“a2b2c2”,又要看人们预想的太空语言的表达方式等等。
三、数学史教育的原则
数学史教育应遵循以下四个原则:科学性、实用性、趣味性、广泛性。第一、科学性是第一位的原则。教师向学生传授的数学史知识必须是正确的。我们应该尊重历史,尊重事实,既不可随意编造,也不能无端拔高,更不可艺术加工,把数学史当作故事,随意虚构。特别在讲授中国的数学史时,实事求是更能激发民族自尊心和爱国主义热情。
第二、实用性是指所讲的数学史对学生的数学学习及将来工作有直接帮助作用。限于时间、授课计划,应有所侧重,例如初等数学中的数的起源与记法、无理数的导入与确立、圆周率、勾股定理、笛卡尔对直角坐标系的贡献等,高等数学中的微积分的概念、函数的概念、非欧几何的创立,不仅史料丰富,而且内容精彩,非常适合于课堂教学,对学生理解所学的知识有很大的帮助。
第三、趣味性指课堂教学要有趣味。题材的典型,情节的生动,发展的曲折,数学史上惊心动魄,引人入胜的例子不胜枚举,教者应恰当选材,能使课堂教学娓娓动听。讲授时要合理地运用语言,全身心地投入表达,语调同情节配合,知 识性与趣味性共生,应避免照本宣科或哗众取宠,要寓教于乐,以教为本。
第四、广泛性是指选取的数学史知识要不分年代、国家。数学是几千年来全人类孜孜以求、不断探索、历尽千辛万苦共同取得的财富。在整个数学科学发展长河中,数学是在人类社会变革推动之下,各国数学家相互交流,学习共同探索的结果。因此在进行数学史教学时注意选择不同时期、不同国度的史料,不能仅局限于中国的数学史。这样才能全面地、真正地、准确地展示数学史的全貌。
四、数学历史与数学教育结合中的一些注意问题
从目前来看,数学历史与数学教育相结合的实践过程,确实发生了一些可喜的变化,但存在的问题依然不少。以下是几个应注意的问题:
首先,数学历史与数学教育要在深层次结合,避免表面化。例如,只提及历史上有那么个人,有那么回事,没有切入到更深层次的联系界面中,因而不能发挥数学历史的启示和引导作用。
其次,数学历史与教学内容要融合,不要割裂。这就是说,不要介绍一段数学历史,然后接着讲课程内容,前后没有任何联系,不作任何衔接,给人一种断裂感,学生在思想上不能得到启发。
再次,运用数学史知识要客观,不要片面拔高。例如,对于到底是商高定理出现早,还是毕达哥拉斯定理出现早的问题,应该根据史实客观地叙说,多一些谦逊的态度、欣赏的目光,不要带有狭隘的民族主义情绪。
事实上,在勾股定理的发现上中国人是否走到了前面至今没有定论。目前比较倾向于古巴比伦的勾股数为勾股定理的最早原形。至少是知道勾股数的时间,比起我国公元前1000年的《周髀算经》中描述的勾股定理要早几百年的时间。
最后,数学史用于教育,要把爱国主义和国际意识统一起来,不要局限于发现的迟早。数学是全人类的共同财富。在科学发现上,各个国家和各个民族应该彼此借鉴,互相学习,共同提高。不能以己之长,说人之短,借以提高自己的信心。相反,要实行拿来主义,把外国的一切优秀文化,包括数学成就都充分尊重,吸收过来。“洋为中用”,为中国的建设服务,这是爱国主义的精粹。我们注意到,许多国家的数学教学大纲中,并没有直接提到“爱国主义”的字样,但是他们强调联系现实生活,努力吸收世界上的一切优秀数学成果,为发展本国科 5 学事业服务,实际上也是爱国主义教育。数学上的成就不能只论迟早,不可用比别人早多少年作为衡量数学成就的标准。
人类的数学文明最早起源于巴比仑,其次是埃及。巴比伦的泥板、埃及的纸 草书上的数学记载都在公元前1000年以上。即便是后来的古希腊的数学文明 也远早于中国。中国古代数学虽然出现得比地中海文明要迟许多,但是具有自 己的特点,同样为人类作出了重要贡献。我国著名数学家,2001年获得首届国家最高科学奖的吴文俊教授,曾经十分深刻地指出,中国古代数学的优秀传统是“算法数学”。中国算学虽然缺乏古希腊式的公理化演绎体系,却十分准确地用算法的形式表达出来。1970年代,吴文俊教授从研究中国古算受到启发,并结合现代计算机技术进行思考,发展出了世界领先的“数学定理机器证明”方法(世称“吴方法”)。这样的古为今用,才是真正的爱国主义,才能真正激发起民族自豪感。
如何运用数学史进行数学教学,是一个国际数学教育界共同关心的问题。1998年,国际数学教育委员会在法国马赛组织了一次“数学史与数学教育”的专题研讨会①。这次会议的主题是数学文化,要求数学教学充分反映数学的文化底蕴,从课程内容,概念形成,证明方法,习题配置等各个方面,全方位地使数学史融入、丰富和促进数学教学。
总之,数学史不是竞赛场,仅仅记录“胜者为王”。数学文化观念下的数学 史,要把握各民族文化发展的历史进程,看到世界各国的科学技术是如何各自发 展,又如何彼此融合,互相促进的。
思考与练习
1.试举例说明数学史对数学教育的价值。
2.怎样认识数学史教育中爱国主义和国际视野之间的关系。
3. 进一步阅读有关吴文俊研究中国古代数学史,并做出机器证明创新工作的文献。
第三篇:浅析现代社会经济发展中的政府职能
浅析现代社会经济发展中的政府职能
[摘要] 政府职能,是指政府对国家和社会经济的发展应具有的职责和功能,它揭示了政府在社会经济中的基本方向和基本作用。在现代社会经济中,政府不仅承担着保卫国家的主权职能,保障社会安定的社会职能,更重要的是国家还承担着经济管理职能,或称为经济职能。而且随着经济社会的发展,这一职能将会显得越来越重要。市场经济条件下,政府的经济职能在日益加强,这是现代社会经济发展的必然要求。
一、稳定经济是政府的必要责任
政府要保一方平安,必须坚持严格执法,推进依法治国,确保市场经济健康、有序发展。国内消费市场的巨大潜力即使不能在短期之内拉动经济,也足以稳定市场信心,因此,政府会否出台新的刺激消费的政策,以改善需求,将决定中国经济复苏的速度和质量。在经济总量均衡,实现总供给等于总需求的宏观目标实现上,市场机制的作用有着重大的局限。因为市场本身具有自发性、事后性、分散性的特点,使总量均衡目标的实现成为不确定的事情,经济常常处于一种不稳定和周期性的波动状态。我们不否定市场经济具有自动恢复到平衡状态的力量。然而,从丧失的产出和人们遭受的这种痛楚来看,等待经济的自动恢复,其成本是巨大的,政府必须承担起稳定经济的职责。
二、政府在市场经济发展中的调控职能
政府在市场经济体制下,应当把主要精力用于制定经济政策、运用经济杠杆、采用经济措施、运用法律手段、采用必要的行政手段和进行收入再分配等调控措施,将中长期发展规划和产业调整由政府化变为企业的自觉行动,不能靠行政命令。由政府实施宏观调控政策,即在经济增长速度过快时,实施紧缩的财政和货币政策,而在经济增长速度过慢或停止时,实施宽松的财政和货币政策,以烫平经济增长的波峰和波谷,使经济保持稳定增长的状态。
在社会物品一定的情况下,政府提供物品的增加,就是市场生产物品的减少,政府提供物品的多少是衡量政府参与经济活动的重要指标。公共物品是人们生活享受与发展不可缺少的物质内容,作为外部性的极端例子,市场往往体现出提供的不足,这就需要政府发挥作用。市场失败要求政府直接参与经济或对经济进行干预,政府失败又要求减少政府对经济活动的直接参与和调节,削减政府规模,政府就在这市场失败与政府失败的互动中,时而扩大,时而缩小。然而无论如何,政府在经济中是不可或缺的,并且随着市场经济的发展,其经济职能将日益增强。在复杂的现代社会中,没有市场的政府和没有政府的市场都是无法想像的。离开了市场,现代社会将难以持续健康地发展;离开了政府,市场正常运作的制度前提也将无法保障。现代市场制度得以确立的产权保护、损害赔偿等规则,公平有效的竞争环境,仅仅靠市场交易双方的合意约定和自我保护是远远不够的,具有强制力的政府是提供相应制度安排的最重要的制度供给者。当然应该注意,政府与市场之间的这种共生关系不应是亲密无间的,而应该保持一定的距离。
三、政府在经济发展中的社会管理职能
社会管理体制是构建和谐社会的制度条件。在市场经济条件下,政府主要是提供基本的法律与秩序,组织提供基础设施,提供必要的公共服务。
1.要将大量的社会性服务事务下放给市场、社会中介组织和城乡社区。
2.增强构建和谐社会的职能,全面协调发展、调节收入分配、化解社会矛盾、维护社会公正、保持社会稳定、强化危机管理。
3.改进社会管理方式,应坚定不移地朝着法治政府、依法行政、公开透明、廉洁高效、公正有序的方向努力,重点是进一步健全科学民主的政府集体决策机制,建立重大决策的调研、专家咨询、听证、公示、职责追究责任制度,形成用制度规范从政行为、按制度办事、靠制度管人的长效机制。
4.全面清理现有行政法规,完善社会管理法制,维护人民群众根本利益。处理好依法执政与依法行政的关系,不越位,不缺位。处理好内部监督与社会监督的关系,保障人民群众的知情权和监督权。
四、政府在经济发展中的服务职能
发展社会主义市场经济要靠经济主体强化内部管理,但也离不开政府有力的服务和支持。政府转变职能很重要的是增强服务职能。要培育和完善市场体系。作为政府,有责任为企业提供一个良好的公平的市场环境。提高服务质量,提升政府形象,要建设服务型政府就必须进一步提高服务质量。
1.简化办事程序,提供优质服务,着力改善软环境。
2.增强为民意识,牢记党的宗旨,立足本职,尽心尽责,心系群众,扎扎实实帮助群众解决实际问题,实实在在为群众谋利益。坚持在服务经济、服务基层、服务群众中塑造政府新形象。
3.加强学习政治理论、业务知识及科学技术知识,努力提高综合素质,不断改善政府部门的服务质量,建设学习型政府。
4.政府通过有效的宏观经济调控和管理,为全社会提供良好的金融环境和经济发展环境。
5.提出科学的中长期规划,为企业和社会提供经济社会发展预测。
6.政府通过严格规范的市场监管,形成良好的市场环境,保持公平的市场竞争秩序。
7.经济信息是最重要的经济性公共服务,政府要及时、公开地向全社会提供经济信息和市场信息。
本文作者(谢倩)
第四篇:小学数学中的数学史(模版)
小学数学中的数学史
摘要:数学史融入小学数学是一种趋势与必然,小学数学教材各版本都不同程度地选入了一些数学史料作为背景知识。义务教育阶段小学数学教材中的数学史主要体现在数学的传承与融合数学应用以及数学与社会生活的联系。本文就数学史在小学数学中的渗透、内容及设计、意义进行了研究,旨在利用数学史引导小学生初步感受数学的发展史,并拓展小学生的数学知识面,培养学生的创新意识和创造 能力。
关键词:小学数学教材;数学史;渗透;内容设计
一. 数学史在小学教材的渗透
新课改以来我国数学教材呈现出了繁荣的景象,而数学史也在各种版本的小学数学教材中不断渗透,并且成为新时期数学教材的新亮点。教材中渗透的数学史方式众多,主要体现在数学的传承性与融合性与数学的应用性,即对其他学科的发展与社会生活的影响等。具体可分为四类:其一遵从数学史的发生发展规律按照时间维度进行渗透;其二按照数学发展进程中不同国家或地区的卓越贡献进行渗透;其三从数学与学科之间的紧密关系进行渗透其;四从数学对社会生活的影响方面进行渗透【2】。
从整体分布上看,除六年级第二学期外,人教版在一二年级和四年级第二学期没有安排数学史,苏教版在一二年级、三年级第一学期
和五年级第一学期没有安排数学史。但是,西师版教材从一年级就开始渗透数学史,每册均有安排,体现出一定的连续性,使数学史凸现出来,显现出数学史的独特性和整体性。
数学史之于数学教学的价值,早在19 世纪就被一些西方数学家所认识。1972年,在第二届国际数学教育大会上,成立了数学史与数 学教学国际研究小组,简称HPM。三十多年来,随着HPM研究的不断 深人,数学史和数学教学的结合已是一种国际数学课程改革的趋势。数学史走进小学数学课堂是一种必然,但这种必然和现实相比,有很大的反差。在原先的教学设计之外,加一点数学史的知识,借以给课 堂增加些文化色彩。这种方式是否充分展示了数学史的教育价值?总之,数学史怎样进入小学数学课堂,已是理论演绎和实践反思双向互 动中生成的迫切课题【1】。
二. 数学史在小学教材的内容及设计
小学数学教材中数学史的类型主要有数学家的趣闻轶事,数学家解决问题的故事,相关数学知识史料,以及经典数学问题等。3种版本教材也都不同程度选用了数学家的故事进行介绍。其中,西师版教材还特别添加了标题以突出主题,如“著名数学家华罗庚”、“聪明的高斯”、以及 “圆周率之父祖冲之”等。
小学数学史内容选择、分布和篇幅容量体现了小学数学教材中数学史内容的外部特点,而对数学史的具体编排设计却体现了它的内部特点,即怎样设计才能使数学史更好地在小学数学课程教学中发挥其
教育教学功能。
目前数学史内容设计主要有两种模式,即“阅读材料式数学史”和“习题内容引出数学史”设计模式。我们认为可以增加“学习内容引出数学史”和“数学史引出学习内容”两种设计模式,它们与前两种本质的不同在于,数学史内容被请进了小学数学知识体系的核心殿堂,而不是边缘化于学习内容。“学习内容引出数学史”模式以学习内容为主线,数学史作为学习内容的注解和阐释,能够丰富学习内容的内涵,为数学知识的学习增添绚丽色彩,使儿童在学习数学知识的同时体验数学的历史厚重感和美感。“数学史引出学习内容”模式是用数学史引领数学知识的学习,使儿童置身于历史境遇中,与文本达成视界融合,形成对数学知识的历史性理解。
低段儿童自主阅读能力较弱,数学史的学习更多依赖教师的引导。因此,数学史的设计模式要有利于教师更好地设计和实施教学,“习题内容引出数学史”、“学习内容引出数学史”和“数学史引出学习内容”设计模式便可以做到这点,页面可以稍小。中段可以综合运用4种设计模式,逐步由多采用“习题内容引出数学史”、“学习内容引出数学史”和“数学史引出学习内容”模式向多采用“阅读材料式数学史”模式过渡。高段可逐步采用“阅读材料式数学史”模式进行编排设计,页面最好充足,随着学生社会化程度的提高以及在低段所接受的数学史渗透,只要教师能够恰当引导,就能发挥极好的作用。当然,以阅读材料形式呈现,最好明确注明标题以突出主题,另外,还可适当提供相关书目和网站,利于学生拓展学习空间【3】。
三、数学史在小学教材的意义
考虑到小学生的各方面特征,因此在数学史的呈现形式上要尽可能地丰富,以激起学生从小学好数学的兴趣。比如可适当增加些连环画这种呈现形式,使得数学史更具有可读性。有条件的还可以摄制相关视频以光盘形式附在书后,使学生更形象、更直观地接触数学史,对其产生深刻的印象。
传统数学课本以及现行教材中均有少量数学史材料, 或以数学趣题引入新的内容, 或插入某位数学家的画像并简介其生平,或是在课文之后附加一则阅读材料。数学课本可以将历史上的数学小故事作为问题情境引出新内容,来鼓励学生热爱数学、勤奋学习, 例如阿基米德在死神降临之时仍醉心于数学研究,欧拉双目失明后通过记忆和心算仍有大量成果问世等等。不过, 除了这种简单的拼凑处理外, 更多地应将数学史料(尤其是数学的思想方法)有机地渗透融合到课程中。
为了数学教学的价值取向同样研究数学史,为了历史和为了教学这是两种完全不同的价值取向。我们现在所看到的绝大多数数学史,立论之基都是为了史,所以更关注史实的真伪,所研究的内容也更多的是数学发展史上重要的数学事件、数学人物。而为了教学的数学史研读,是为了站在历史的高度,厘清知识的来龙去脉、数学思想的演进走向,更好地把握住所教数学知识的知性本质,以求得我们的数学教育能注人深刻和厚重。所以,为了教学的数学史读,是立足于现实
中的“人”而去关注历史中的“人”和“事”。要通过历史上不同数学事件的比较,提炼数学思想发展的规律,不断优化自己的数学观念(例如,根据数学中很多重要概念在其诞生之际都是直观具体、不系统的史实,继而确立数学知识的儿童化处理是极其重要的教学技 巧 的观念);要透过某知识历史演进的脉络,提炼出人类认识逐步提升 的序(例如,读代数的发展历史,可以概括出人类认识大致经历了文辞代数、缩写代数、符号代数三个阶段)。要善于抓住历史的表象,立足于认识论的角度多些追问(例如,数的认识过程都是漫长的,但人类认识负数为什么比起认识自然数和分数来得更为曲折和艰难? 要透过历史上人类认识曾经走过 的弯路、数学家们的挫折和困惑,提炼出人类认识某知识的障碍(这些挫折恰恰也就是学生的认知难点);要立足于“给孩子们正确的数学观念和良好的学习情感”的视角,捕捉有教育意义的历史故事和历史事件【4】。研读所依据的材料不是原始的数学史料和文物,而是各种版次的数学史著作;研读方法上要围绕同一个事件,研读不同版本的数学史,从不同的数学史著作中丰富此数学事件的内涵,更要参考数学史上数学家的传记等资料,通过历史上典型个体的思维过程的细述,用多种资料相互考证和补充,从而“复原”古人的数学思想方法和思维提升历程。
参考文献
[1] 蔡宏圣.数学史:从象牙塔到小学课堂[J].课程·教材·教法,2009
年,29(2):40-43.[2] 陈朝东,穆琳.数学史在我国小学数学教材中的渗透[J].现代小学教育,2013年,(3).[3]杨豫晖,魏佳,宋乃庆.小学数学教材中数学史的内容及呈现方式探析[J].数学教育学报,2007年,16(4):80-82.[4]朱哲,张维忠.中小学数学课程中数学史的呈现方式[J].浙江师范大学学报(自然科学版),2004年,27(4):422-424.
第五篇:数学史与数学教育 答案
数学史与数学教育绪言
(一)【单选题】(A)于1758年出版的著作《数学史》是世界上第一部数学史经典著作。A、蒙蒂克拉 B、阿尔弗斯 C、爱尔特希 D、傅立叶 2 【单选题】首次使用幂的人是(C)。A、欧拉 B、费马 C、笛卡尔 D、莱布尼兹 3 【单选题】康托于(B)年起开始出版的《数学史讲义》标志着数学史成了一门独立的学科。A、1870 B、1880 C、1890 D、1900 4【判断题】历史上最早的数学史专业刊物是1755年起开始出版的《数学历史、传记与文献通报》。X 5【判断题】公元前5世纪的《希腊选集》中记载了关于丢番图年龄的诗文。(X)
数学史与数学教育绪言
(二)【单选题】卡约黎的著作《数学的历史》出版于(B)年。A、1890 B、1894 C、1898 D、1902 2 【单选题】史密斯的著作《初等数学的教学》出版于(A)。A、1900 B、1906 C、1911 D、1913 3 【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。A、德国 B、法国 C、英国 D、美国
4【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。(X)
5【判断题】史密斯倡导建立了ICMI。(V)
数学史与数学教育绪言
(三)【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。A、基础重复原理 B、往复创新原理 C、历史发生原理 D、重构升华原理 2 【单选题】史密斯的数学史课程最早开设于(C)年。A、1889 B、1890 C、1891 D、1892 3 【单选题】《如何解题》、《数学发现》的作者是(C)。A、庞加莱 B、弗赖登塔尔 C、波利亚 D、克莱因
4【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。(V)
5【判断题】18世纪欧洲主流学术观点不承认负数为数。(V)
数学史与数学教育绪言
(四)【单选题】HPM的研究内容不包括(D)。A、数学教育取向的数学史研究 B、基于数学史的教学设计 C、历史相似性研究
D、数学史融入数学科研的行动研究 2 【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。D A、大中学校数学史课程
B、数学史在数学教学上的运用
C、各层次数学史与数学教育关系的观点 D、数学史对数学发展的推动作用 3 【单选题】(A)最早计算出了地球与太阳间距离和地球和月亮间距离之比。A、Aristarchus B、Plato C、Nikolaj Kopernik D、Archimedes 4【判断题】为了讲解锐角三角函数中三角比的变化情况,采用日晷的例子比梯子靠墙下滑的例子更为科学的原因是日晷的例子中一条直角边长度不变。(V)
5【判断题】古巴理论时期的数学泥板M7857记录了等差数列求和问题。(X)
数学史与数学教育绪言
(五)【单选题】由驴桥定理可判断的是(C)。A、等边三角形三个角相等
B、等边三角形角度与边长的关系 C、等腰三角形两底角相等
D、等腰三角形底角与腰长的关系 2 【单选题】将圆周分为360等份,每份对应为1度,是源于(C)。A、古埃及 B、古希腊 C、两河流域 D、古印度 3 【单选题】之所以将平面直角坐标系中平面所分成的四个部分叫象限,来源于清朝天文学家梅文鼎将(D)分为四等分,每个四分之一圆称为象限。A、正方形 B、长方形 C、三角形 D、圆形
4【判断题】托勒密的《天文大成》中提出了度分秒的概念。(V)5【判断题】数学归纳法的名称来源于19世纪德国人的著作。(X)
数学史与数学教育绪言
(六)【单选题】阿那克萨戈拉斯认为,人生的意义在于研究(B)。A、日、月、星 B、日、月、天 C、人、理、星 D、人、理、天 2 【单选题】萨顿被认为是(A)之父。A、科学史 B、数学史 C、代数史 D、几何史 3 【单选题】祖暅利用截面原理推导出了(C)的体积。A、正方体 B、长方体 C、球体 D、椎体
4【判断题】John Dee在其毕业论文中对亚里士多德的大量理论做出了批判。(X)5【判断题】法国数学家韦达的正式工作其实是一名医师。(X)
数学史与数学教育绪言
(七)【单选题】利玛窦和徐光启根据(C)的《几何原本》翻译了其前六卷的内容。A、希腊语版 B、阿拉伯语版 C、拉丁文版 D、英文版 2 【单选题】(C)数学家索菲·热尔曼对费马大定理做出了一个一般性结论。A、德国 B、英国 C、法国 D、俄国 3 【单选题】利玛窦向徐光启所说的西方学校中必学的教材是(A)。A、《几何原本》 B、《测量法义》 C、《勾股义》 D、《定法平方算数》
4【判断题】法国数学家华里司的作品《微积溯源》成为中国第二本微积分教材。(X)5【判断题】索菲·热尔曼在巴黎大学跟随高斯学习,激发了其对数学的兴趣。(X)
数学史与数学教育绪言
(八)【单选题】林肯于1860年选举总统之前几乎精通了《几何原本》的前(C)卷)。A、4 B、5 C、6 D、7 2 【单选题】毕达哥拉斯定理在《几何原本》中第一卷的第(C)条命题。A、27 B、37 C、47 D、57 3 【单选题】托马斯·霍布斯于(C)岁开始学习数学 A、20 B、30 C、40 D、50 4【判断题】法布尔在其小说《昆虫记》中提到了大量关于其学习数学的经历。(X)5【判断题】托马斯·霍布斯的《利维坦》在形式上受到了《几何原本》的较大影响。(V)
数学史与数学教育绪言
(九)【单选题】根据第斯多惠的观点,错误的教学原则是(D)。A、由近及远 B、由简到繁 C、由易到难
D、由未知到已知 2 【单选题】西塞罗认为,“假如我们把(D)看作我们的向导,她是决不会把我们领入歧途的”。A、科学 B、理性 C、数学 D、自然 3 【单选题】在教育学中,(D)提出“自然不强迫任何事物去进行非它自己的成熟了的力量所驱使的事”。A、卢梭 B、赫尔巴特 C、杜威
D、夸美纽斯
4【判断题】阿波罗尼斯在其著作《圆锥曲线》中证明了交半径之和为常数。(V)5【判断题】解析几何的发明者是笛卡尔。(V)
数学史、数学情感与数学观
(一)【单选题】(B)认为唯有有教养的人才能领会兴趣。A、克莱因 B、第斯多惠 C、夸美纽斯 D、裴斯泰洛齐 2 【单选题】(C)认为兴趣是创造一个欢乐和文明的教育环境的主要途径之一。A、克莱因 B、第斯多惠 C、夸美纽斯 D、裴斯泰洛齐 3 【单选题】(B)认为教师要以学习兴趣为教学的前提。A、克莱因 B、第斯多惠 C、夸美纽斯 D、裴斯泰洛齐 4【判断题】《Marcus Ordeyne的道德》一书中主要表现了数学教育与兴趣之间的联系。(X)5【判断题】两河流域先于中国人发现了勾股定理。(V)
数学史、数学情感与数学观
(二)【单选题】祖冲之第一个计算出的圆周率为(C)。A、七分之二十二 B、二十二分之七
C、一百一十三分之三百五十五 D、三百五十五分之一百一十三 2 【单选题】(C)人最早使用了负数。A、印度 B、阿拉伯 C、中国 D、古希腊 3 【单选题】第一个运用角边角定理进行远距离测量的是(A)。A、泰勒斯 B、柏拉图 C、亚里士多德 D、欧几里得
4【判断题】运用角边角定理进行远距离测距的主要原因是需要测量的距离出现时间较短,来不及直接测量。(X)
5【判断题】阿基米德发现圆的直径等分圆。(X)
数学史、数学情感与数学观
(三)【单选题】斐波那契于(B)年出版了《计算之书》。A、1200 B、1202 C、1204 D、1206 2 【单选题】阿基米德假设每一粒沙与罂粟壳大小相当,推算出整个宇宙中的沙粒数量10的(D)次幂。A、38 B、47 C、52 D、63 3 【单选题】首先发明幂指数的人是(C)。A、阿基米德 B、泰勒斯 C、笛卡尔 D、牛顿
4【判断题】古罗马哲学家西塞罗于公元75年寻找到了阿基米德的坟墓。(X)5【判断题】阿基米德首次计算出来球和外切圆柱体的体积之比为3:2。(X)
数学史、数学情感与数学观
(四)【单选题】蒲柏在《人论》提到蜘蛛与(C)一样可以稳稳当当地画平行线。A、牛顿 B、笛卡尔 C、棣莫佛 D、欧拉 2 【单选题】为了解决天文运算问题,从伦敦前往爱丁堡与纳皮尔会面的数学家是(D)。A、麦克劳林 B、利尔特伍德 C、惠特克 D、布里格斯 3 【单选题】(C)说过对数的发明让天文学家的寿命增加了一倍。A、拉格朗日 B、阿利斯塔克 C、拉普拉斯 D、罗蒙诺索夫
4【判断题】古埃及的分数起源之一与神话人物荷鲁斯的眼睛有关。(V)
5【判断题】讲数学史不仅可以激发学生的兴趣,也可以促进学生对数学的理解。(V)
数学史、数学情感与数学观
(五)【单选题】(A)通过引用杰罗姆的《懒人懒办法》的情节衬托出了字母表示数的优越性。A、克莱因 B、第斯多惠 C、夸美纽斯 D、裴斯泰洛齐 2 【单选题】佛教中1微尘是(D)极微尘。A、1 B、3 C、5 D、7 3 【单选题】下列换算中,不符合《佛本行集经》卷12中提到的“几许微尘成一由旬”的内容的是(A)。A、七指节成一尺 B、七兔尘成一羊尘 C、七牛尘成一虮 D、七芥子成一大麦
4【判断题】Henry Perigal以水车翼轮法证明了勾股定理。(V)5【判断题】欧拉与狄德罗关于上帝是否存在的论证中,狄德罗成功证明了上帝的存在。(X)
数学史、数学情感与数学观
(六)【单选题】根据大多数学者的观点,解析几何历史发展分为(A)个阶段。A、三 B、四 C、五 D、六 2 【单选题】解析几何两条坐标轴的最早来源于(C)。A、阿基米德 B、丢番图 C、阿波罗尼斯 D、欧几里得 3 【单选题】基于横、纵坐标的曲线作图来源于(D)。A、莱布尼茨 B、惠更斯 C、笛卡尔 D、奥雷姆
4【判断题】费马对解析几何的贡献在于,首先根据动点所满足的条件,求关于动点横、纵坐标的方程。(X)
5【判断题】洛必达的作品《无穷小分析》分析了0/0不定型的解法。(V)
数学史、数学情感与数学观
(七)【单选题】(C)发现无穷多个数加起来可能是一个有限的数。A、丹尼尔·伯努利
B、奥古斯丁·路易·柯西 C、雅各布·伯努利
D、路易吉·圭多·格兰第 2 【单选题】玫瑰线最早的研究者是(D)。A、丹尼尔·伯努利 B、克里斯蒂安·惠更斯 C、雅各布·伯努利
D、路易吉·圭多·格兰第 3 【单选题】(B)首先给出了微积分无穷级数收敛性的判别法。A、丹尼尔·伯努利
B、奥古斯丁·路易·柯西 C、雅各布·伯努利
D、路易吉·圭多·格兰第
4【判断题】0/0不定型问题最早的解决者是伯努利。(V)5【判断题】亚里士多德不接受潜无穷和实无穷。(X)
数学史、数学情感与数学观
(八)【单选题】(C)在《大教学论》中提出,教育实践中存在偏差。A、克莱因 B、第斯多惠 C、夸美纽斯 D、裴斯泰洛齐 2 【单选题】勃利亚在《数学的发现》中提出,数学教学的三原理不包括(D)。A、主动学习B、最佳动机 C、阶段序进 D、整体测评 3 【单选题】爱德华·桑戴克的《教育之根本原理》中提出,从根本看来,一切学习和教学都在(C)。A、传授知识 B、训练思维 C、激起动机 D、建立逻辑
4【判断题】为了纠正教育实践中存在的偏差,应该用一切可能的方式让孩子记住计划中的知识。(X)
5【判断题】古巴比伦时期就已经有人运用了平方差公式。(V)
数学史、数学情感与数学观
(九)【单选题】下列成就中不属于埃拉托色尼的是(C)。A、发现素数的筛选法 B、编著了科学史
C、亚历山大图书馆首任馆长 D、制作当时最完整的世界地图 2 【单选题】一元二次方程的认知基础是(B)。A、x加y等于a B、x的平方的等于a C、x乘y等于a D、x的倍数为a 3 【单选题】埃拉托色尼通过阿斯旺水井测量了(D)。A、太阳到地球的距离 B、阿斯旺的纬度 C、太阳的大小 D、地球的半径
4【判断题】创造学生的学习动机时,不能仅仅选用一个实际的例子,还需要考虑例子选用得是否自然。(V)5【判断题】1906年发现的欧几里得的《方法论》的前言中提到将本书献给埃拉托色尼。(X)
数学史、数学情感与数学观
(十)【单选题】卡丹公式是指(C)方程求根公式。A、一次 B、二次 C、三次 D、四次 2 【单选题】卡尔达诺在其作品(C)中提出“将10分成两部分,使其乘积为40”的问题。A、《论赌博游戏》 B、《游戏机遇的学说》 C、《大术》 D、《事物之精妙》 3 【单选题】虚数是由(D)命名的。A、欧拉 B、费马 C、莱布尼兹 D、笛卡尔
4【判断题】从历史角度看,数学家研究参数方程是因为直角坐标方程无法解决在某一个时刻运动质点的位置问题。(V)
5【判断题】在莱布尼兹的时代,对于虚数的已经有了较为透彻的研究。(X)
数学史、数学情感与数学观
(十一)【单选题】《庄子·天下》中可以用于递缩等比数列教学的是(B)。A、暗而不明,郁而不发,天下之人各为其所欲焉以自为方 B、一尺之棰,日取其半,万世不竭
C、不累于俗,不饰于物,不苟于人,不忮于众 D、其理不竭,其来不蜕,芒乎昧乎,未之尽者 2 【单选题】克莱姆在(B)中用到了五元一次方程组,引入了克莱姆法则。A、《随机变量与概率分布》 B、《代数曲线分析引论》 C、《数理统计法》 D、《代数分析基础理论》 3 【单选题】芝诺四大悖论中不包括(C)。A、两分法悖论 B、阿喀琉斯悖论 C、飞矢不停悖论 D、游行队伍悖论 4 【单选题】切线研究的三大问题不包括(D)。A、光在曲面上的反射 B、曲线运动的速度 C、曲线的夹角 D、曲线的曲率
5【判断题】苏格兰数学家格雷戈里利用无穷级数解决了阿喀琉斯悖论问题。(V)
数学史、数学情感与数学观
(十二)【单选题】阿波罗尼斯对(C)的切线有详尽的论述。A、圆
B、阿基米德螺线 C、圆锥曲线 D、一般曲线 2 【单选题】(C)在17世纪分别独立给出了一般曲线切线的求法。A、帕斯卡和笛卡尔 B、帕斯卡和欧拉 C、费马和笛卡尔 D、费马和欧拉 3 【单选题】欧几里得在《几何原本》中提出一个圆和一条切线之间(A)。A、插不进去第二条直线 B、存在且仅存在第二条切线 C、存在无数的切线 D、存在两个交点
4【判断题】与曲线只有一个公共点,但是不穿过曲线的直线即为曲线的切线。(X)5【判断题】求一般曲线某一点切线的方法之一就是找出其对应的次切线。V 数学史、数学情感与数学观
(十三)1 【单选题】(B)设计了萨莫斯岛上引水的隧道。A、毕达哥拉斯 B、欧帕里诺斯 C、德谟克利特 D、赫拉克利特 2 【单选题】(D)的作品中记载了萨莫斯岛上引水的隧道。A、斯特拉波 B、修昔底德 C、荷马
D、希罗多德 3 【单选题】与莫里斯·克莱因观点不同的是(C)。A、知识是一个整体,数学史这个整体的一部分
B、每一个时代的数学都是这个时代更广阔的文化运动的一部分。C、我们必须将数学与所讲主体相关的别的学科分割开来。
D、必需尽可能组织材料,使数学的发展和我们的文明和文化的发展联系起来。
4【判断题】萨莫斯岛上引水的隧道的测定方位的方法被作为几何学的应用典范记载在《几何原本》中。(V)
5【判断题】萨莫斯岛上引水的隧道在挖掘过程中为了保证隧道两端挖掘的方向正确,运用到了三角形相似原理。(V)
数学史、数学情感与数学观
(十四)【单选题】
蒙特堡三个相同形状比例约为()C。A、3:2:0.414 B、3:2:0.618 C、2:1:0.414 D、2:1:0.618 2 【单选题】欧洲哥特式教堂的圆花窗的几何元素一般只有(C)。A、圆和三角 B、圆和正方形 C、圆和线段 D、圆和菱形 3 【单选题】蒙特堡是(C)边形。A、六 B、七 C、八 D、九
4【判断题】德国天文学家提丢斯建立的数列推动发现了冥王星。(X)5【判断题】德国天文学家提丢斯建立的数列解决了太阳系行星与太阳距离的问题。(V)
数学史、数学情感与数学观
(十五)【单选题】伽莫夫为了揭示(D)的奥秘,提出了无人荒岛上的宝藏问题。A、切线 B、等比数列 C、对顶角 D、虚数 2 【单选题】天文学家托勒密认为入射角与折射角(A)。A、成正比 B、成反比 C、相等
D、因介质不同而不同 3 【单选题】加莫夫提出的无人荒岛上的宝藏问题中,即使不知道(C),也能找到宝藏。A、橡树 B、松树 C、断头台
D、以上都正确
4【判断题】莱布尼茨发表的第一篇微积分论文中,用微积分证明了折射定律。(V)5【判断题】阿尔·海森通过实验发现了折射定律,但无法推导出来。(X)
数学史、数学情感与数学观(十六)【单选题】以下作品中,(A)是用数学语言写成的。A、《拼凑的裁缝》 B、《亲和力》 C、《西敏寺评论》 D、《现代画家》 2 【单选题】儒勒·凡尔纳的作品(D)中提到了麦子多次种植后可以收获的总量的数学问题。A、《气球上的五星期》 B、《地心游记》 C、《格兰特船长的儿女》 D、《神秘岛》 3 【单选题】托马斯·卡莱尔首次利用(C)解出了一元二次方程。A、代数学 B、微积分 C、几何学 D、作图法 4【判断题】《爱丽丝漫游奇境记》的作者路易斯·卡罗尔在牛津大学基督堂学院任数学讲师。(V)
5【判断题】《格列佛游记》中利立浦特人根据主角与利立浦特人的体重之比确定了主角每天可以得到的食物总量。(X)
数学史、数学情感与数学观(十七)【单选题】(C)是伯努利家族代表人物之一,被公认为概率论的先驱之一,较早研究了e作为数学常数问题。A、尼古拉·伯努利 B、约翰·伯努利 C、雅各布·伯努利 D、丹尼尔·伯努利 2 【单选题】毕达哥拉斯学派研究出正多面体只有(C)种。A、3 B、4 C、5 D、6 3 【单选题】根据《Mathematical Intellingencer》于1988年做出的调查,该杂志的读者认为最美的定理是(B)中的一个。A、半角公式 B、欧拉公式 C、蔡勒公式 D、德摩根公式
4【判断题】伽利略认为悬链线是抛物线。(V)
5【判断题】美国圣路易拱门其实是悬链线而非抛物线。(V)
数学史、数学情感与数学观(十八)【单选题】法国天文学家G.F.Maraldi于1712年测得蜂房的顶由三个菱形板块构成,其中钝角约为(A)。A、110度 B、120度 C、130度 D、140度 2 【单选题】绕同一点,(C)不能填满空间。A、正三角形 B、正方形 C、正五边形 D、正六边形 3 【单选题】昆提利安认为蜜蜂是(C)学家之首。A、逻辑 B、伦理 C、几何 D、代数
4【判断题】周长相等时,圆的面积最大。(V)
5【判断题】德国数学家克尼格计算出来的最节省材料的蜂房顶部菱形角度与Maraldi观测得出的结论一致。(X)
数学史、数学情感与数学观(十九)【单选题】下列算式中,错误的是(D)。A、0×7=0 B、7×0=0 C、0÷7=0 D、7÷0=0 2 【单选题】亚里士多德认为流星的来源是(C)。A、太阳 B、月球 C、地面 D、宇宙 3 【单选题】婆罗摩笈多在《婆罗门修正体系》中提出0除以0等于(D)。A、1 B、-1 C、不存在 D、0 4【判断题】数学史不仅仅可以通过数学家的成功经验来激发学生兴趣,也能通过揭示数学家的谬误而引导学生学习。(V)
5【判断题】19世纪数学家对于0的乘除运算已经和当今数学家的看法一致了。(X)
数学史、数学情感与数学观(二十)【单选题】汉代以前,中国人认为球的体积与其外切立方体体积之比为(B)。A、8:13 B、9:16 C、10:19 D、11:23 2 【单选题】婆罗摩笈多给出的四边形面积公式在只针对(C)成立。A、折四边形 B、凹四边形 C、圆内接四边形 D、圆外切四边形 3 【单选题】阿耶波多《天文历算书》中认为,四面体的体积公式为(A)。A、底面积乘以高除以2 B、底面积乘以高除以3 C、边长乘以高除以2 D、边长乘以高除以3 4【判断题】阿基米德已经能够计算椭圆的周长。(V)
5【判断题】费马认为当n为非负整数时,2的n次幂加1,所得的结构都是素数。(X)
数学史、数学情感与数学观(二十一)【单选题】Slaught和Lennes在1919年出版的教材中定义棱柱时先定义了(D)。A、角度 B、周长 C、表面积 D、棱柱面 2 【单选题】()在研究一个立体里面热的传导级数时针对柯西认为的“每一个函数连续,那么加起来都是连续的”做出了反例。(C)A、拉格朗日 B、欧拉 C、傅里叶 D、高斯 3 【单选题】《几何原本》认为棱柱是由一些平面构成的,其中由两个面是相对的、相等的、相似且平行的,其他各面都是(D)。A、正方形 B、长方形 C、菱形
D、平行四边形
4【判断题】Wentworth和Smith在1913年出版的教材中首次对棱柱做出了迄今为止最科学的定义。(X)
5【判断题】柯西认为的“每一个函数连续,那么加起来都是连续的”至今只有一个反例。(X)
数学史、数学情感与数学观(二十二)【单选题】伟烈亚力和李善兰翻译了《几何原本》的(D)。A、前6卷 B、4到12卷 C、7-12卷 D、后9卷 2 【单选题】李善兰凭借(C)获得了麦都思的重视。A、《方圆阐幽》 B、《弧矢启秘》 C、《对数探源》 D、《麟德术解》 3 【单选题】中国传统数学的最后一位数学家是(A)。A、李善兰 B、黄耀奎 C、邹伯奇 D、徐有壬 4【判断题】伟烈亚力来中国的时候没有学习过汉语,只有与精通英语的李善兰合作翻译《代微积拾级》。(X)
5【判断题】中国第一本微积分教材是1856年出版的《代微积拾级》。(X)
作为教学资源的数学史
(一)【单选题】达芬奇研究的“猫的眼睛”的过程中,将图形变成了(D)。A、等边三角形 B、直角三角形 C、等腰三角形
D、等腰直角三角形 2 【单选题】达芬奇计算银杏叶形的过程需要的数据是(B)。A、π
B、大半圆的直径 C、大圆弧的弧度 D、小圆弧的弧度 3 【单选题】希波克拉底定理的弓月形使古希腊人以为(A)解决了。A、化圆为方 B、三等分角 C、倍立方问题 D、阿基米德猜想
4【判断题】希波克拉底最早的职业是建筑师,这为他后来研究几何图形奠定了基础。(X)5【判断题】并不是所有的弓月形都可以变成三角形。(V)
作为教学资源的数学史
(二)【单选题】拿破仑在远征埃及图中提出了如何用圆规把一个圆(C)的问题。A、二等分 B、三等分 C、四等分 D、五等分 2 【单选题】现存的古巴比伦泥板中关于数学的泥板大概有(B)片。A、200 B、300 C、400 D、500 3 【单选题】加罕纸草书中记载了(D)解决等差数列的问题。A、古希腊人 B、古巴比伦人 C、古罗马人 D、古埃及人
4【判断题】古巴比伦人用假设的方法解决了等差数列的问题。(V)5【判断题】古埃及所用的莎草纸与现代意义上的纸不尽相同。(V)
作为教学资源的数学史
(三)【单选题】莱因德纸草书中,为了解决递增的等差数列的问题,祭祀可能采用的方式是(D)。A、构建直角坐标系 B、尺规作图 C、列方程 D、设首项为1 2 【单选题】《几何原本》第九卷命题35记载的等比数列求和方法中,无法计算(C)时的情况。
A、q为素数 B、q为合数 C、q等于1 D、q为非整数 3 【单选题】大部分纸草书都是以(C)写成的。A、象形文字 B、楔形文字 C、僧侣文 D、麦罗埃文
4【判断题】莱因德纸草书是英格兰人莱因德在埃及考古过程中发现的。(X)
5【判断题】古埃及人在计算等比数列求和时已经大量使用了现代等比数列求和公式。(X)
作为教学资源的数学史
(四)【单选题】(D)人阿尔·海赛姆研究出的二次幂和公式可以推广为计算一般幂和的公式。A、希腊人 B、埃及人 C、印度人 D、阿拉伯人 2 【单选题】阿基米德在《论劈锥曲面体与球体》命题二引理和《论螺线》命题10中均提到了(A)。
A、二次幂和公式 B、尺规作图法 C、假设法 D、切线求法 3 【单选题】阿基米德通过(C)求出了球的体积。A、逻辑推演 B、等比求和法 C、杠杆原理 D、尺规作图法
4【判断题】阿基米德的《论方法》在1906年发现于伊斯坦布尔。(V)
5【判断题】犹太数学家热尔松的《计算者之书》运用扩缩法计算出了二次幂和。(V)
作为教学资源的数学史
(五)【单选题】(B)运用了古代两河流域运用的和差的方法计算椭圆的面积。A、《圆锥曲线之代数体系》 B、《圆锥曲线解析》 C、《代数在几何上的应用》 D、《论切触》 2 【单选题】N.Guisnee在1705年出版的(C)中对椭圆面积的计算依然与圆锥有密切关系。A、《代数在几何上的应用》 B、《圆锥曲线解析》 C、《圆锥曲线论》 D、《圆锥曲线的几何性质》 3 【单选题】(C)运用了余弦定理计算椭圆的面积。A、《论切触》 B、《圆锥曲线的几何性质》 C、《圆锥曲线论》 D、《圆锥曲线之代数体系》
4【判断题】刘徽的牟合方盖是指两个大小相等的球体的三分之一部分的结合,用以计算球体的体积。(X)
5【判断题】毕达哥拉斯学派认为球体是最美的立体图形。(V)
作为教学资源的数学史
(六)【单选题】日本人利用(D)的方法计算出了粗略的球的体积。A、组合 B、尺规作图 C、假设法 D、切片 2 【单选题】卡瓦列里的(A)使得他解决了球体积的问题,也促进了微积分的发展。A、不可分量原理 B、重心平衡原理 C、表面趋近原理 D、体积分量原理 3 【单选题】祖暅利用牟合方盖求出了(D)。A、椎体的表面积 B、椎体的体积 C、球的表面积 D、球的体积
4【判断题】松永良弼16世纪出版的著作《算法集成》中成功计算出了球的体积。(X)5【判断题】张衡认为球体是外切立方体体积的五分之八。(X)
作为教学资源的数学史
(七)【单选题】(D)的阿拉伯文献中记载了阿布·韦发模型。A、7世纪 B、8世纪 C、9世纪 D、10世纪 2 【单选题】帕普斯的著作《数学汇编》中关于(C)的定理可以用于推导和角公式。A、抛物线切线 B、抛物线顶点 C、圆的切线 D、圆的割线 3 【单选题】克拉维斯的(C)中提出的模型可以解决和角公式问题。A、《星空运动理论》 B、《圆锥计算》 C、《星盘》 D、《测位术》
4【判断题】利用帕普斯《数学汇编》中的定理推出的和角公式是有局限的,并非一般性的公式。V 5【判断题】阿布·韦发模型运用正弦定理解决了和角公式。(X)
作为教学资源的数学史
(八)【单选题】(C)运用出入相补的方法证明勾股定理。A、祖冲之 B、张衡 C、刘徽 D、甄鸾 2 【单选题】达芬奇用了(B)组全等的四边形证明了勾股定理。A、1 B、2 C、3 D、4 3 【单选题】欧几里得证明勾股定理的方式被称为(B)。A、传递的流水 B、新娘的座椅 C、新生的婴孩 D、可控的转换
4【判断题】梅文鼎《勾股举隅》中给出了勾股定理的证明方法。(V)5【判断题】欧几里得证明勾股定理的方式的名称是古罗马人命名的。(X)
作为教学资源的数学史
(九)【单选题】根据毕达哥拉斯学派的研究,证明三角形内角和为180度需要过三角形某一顶点做其对边的(B)。A、垂线 B、平行线 C、平分线
D、反向延长线 2 【单选题】16世纪以前,数学家认为正弦是(B)。A、一条弧线 B、一条线段 C、一条射线 D、一个比值 3 【单选题】克莱罗批评欧几里得的《几何原本》(D)。A、证明存在错误 B、证明过程不清晰
C、没有讲明如何利用其中定理 D、没有讲明如何发现了其中定理
4【判断题】正弦定理现代主要用向量的方法证明。(V)5【判断题】纳速尔丁的《论四边形》给出了正弦定理。(V)
作为教学资源的数学史
(十)【单选题】帕斯卡针对帕斯卡三角形给出了(A)条性质。A、19 B、22 C、25 D、28 2 【单选题】现阶段认可的最早使用数学归纳法的是(D)。A、古埃及人 B、古巴比伦人 C、腓尼基人 D、古希腊人 3 【单选题】约翰·伯努利认为一个变量的函数是由该变量和(C)以任何方式组成的量。A、特定的数
B、特定的比例关系 C、一些常数 D、一些算式
4【判断题】帕斯卡三角里面,任意一条对角线上相邻两个数的比等于各自往两边数的单元的个数之比。(V)
5【判断题】F.Klein认为函数概念应该成为数学的基石。(X)