第一篇:由一个定理的证明谈面积法在平面几何证明中的应用
龙源期刊网 http://.cn
由一个定理的证明谈面积法在平面几何证明中的应用
作者:王召坤
来源:《中学数学杂志(初中版)》2013年第04期
大家熟知的平行线段成比例定理:“三条平行线截两条直线,所得的对应线段成比例.”是一个常用的定理,由此可以推出多个性质,特别是可以推导出三角形相似的判定定理.人教版九年级下册没有给出证明,只是在第41页给出“经证明(这里从略)”,学生颇感困惑.教师教学用书上(第66页)是这样解释的:“由于这个定理的证明涉及无理数、极限等知识,学生尚不能理解”,因此采取了“学生度量相关的线段长度,发现规律,然后直接给出了定理.”因此,这只是一个验证性的结果.图1
普通高中课程标准实验教科书《数学·选修4-1·A版·几何证明选讲》(人民教育出版社,2007年第2版)第7页给出了该定理,并用平行线等分线段定理给出了证明.但也只证明了图1中ABBC为正有理数时定理成立,当ABBC为正无理数时没有给出证明.明显不够完善.在这里我们可以利用三角形的面积公式S=12ah给出其简洁的证明.
第二篇:部分课外平面几何定理证明
部分课外平面几何定理证明
一.四点共圆
很有用的定理,下面的定理证明中部分会用到这个,这也是我把它放在第一个的原因。
这个定理根据区域的不同,在中考有的地方能直接用,有的不能,据笔者所知,北京中考是可以直接用的。其余的还是问问老师比较好。起码在选择题是大有用处的。
二.三角形三垂线交于一点
四点共圆的一次运用。很多人都知道三垂线交于一点,在这里给出证明
三.三角形垂心是连接三垂直所得到新三角新的内心
由三角形的三垂线可得多组四点共圆,一般有垂心的题都离不开四点共圆。
估计这个结论在中考是不能直接用的,如果地区允许四点共圆的话稍微证一下就行了。
四.圆幂定理(在这里只是一部分)
·为割线定理、切割线定理于相交弦定理的总称。
这个应该是很多地方都允许用的,如果不能用的话也是稍微证一下就行了。
五.射影定理(欧几里得定理)
什么也不说了,初中几何里应该是比较常用的。目测考试随便用
六.三角形切线长公式
·已知三角形三边长可求内切圆切点到顶点距离
可能是做的题比较少吧,很少见有这样的中考题。推导也是很简单的。
七.广勾股定理
估计中考允许用的地方不多,除非你那允许“引理”这货
八.弦切角定理
很简单,估计每个地方都允许的。就算不把它当定理,自己也能发现这个结论
九.燕尾定理(共边比例定理)
面积法思想,出现中点时可以用来证线段相等(例如下一个,重心),另外用于比例也是挺好使的。
中考的时候,直接用的话估计老师会认为你跳跃度太大,考虑的时候想到这个,证明的时候用面积法就行了。
十.海伦公式
已知三角形三边可求其面积,可用余弦定理和正弦求面积公式推导,但余弦定理是高中知识(在后面会放出
来)所以不用在这里。另外公式里带根号,若三边中有根号的配凑一下应该可以开根。这里是海伦公式的一个探讨,推广至n边形面积。在第五页有海伦公式的各种变形,其中变形⑤的个边带有平方,可以解决边长带根号的问题,缺点是过于冗繁。吧友可以根据自己的情况进行探讨。
中考嘛,一直不是很喜欢,过多的限制,不能发挥自己的能力。这个公式就不推荐考试的时候用了。
十一.重心
三中线交于一点。同垂心
十二.重心定理:重心把中线分为2:1两部分。
总的来说这些定理考试能用否得问老师,不能用的话,作平行线把推导过程代进证明过程就算是侧面使用定理了,肯定不会扣分的。
十三.欧拉线
由重心定理简单得出
估计中考题都不会考共线神马的(起码广东这地方是不会考的)。
十四.托勒密定理
很好用的一个竞赛定理。中考填空就能用这个解,作垂线设方程就得出来了,其他人还向外做了正三角形神马的。所以个人感觉了解多点知识对于考试或对于兴趣都是挺好的
十五.余弦定理
十六.正弦定理
十七.赛瓦定理(ceva定理)
十八.梅涅劳斯定理(简称梅氏定理menelaus定理)
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
十九.调和点列
二十.中线定理
·表述了三角形三边与中线长的关系
三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。即,对任意三角形△ABC,设I是线段BC的中点,AI为中线,则有如下关系: AB^2+AC^2=2BI^2+2AI^2 或作AB^2+AC^2=1/2BC^2+2AI^2
二十一.角平分线定理
·角平分线的比例性质
二十二.九点共园定理(欧拉圆、费尔巴赫圆)
三角形三边的中点,三条高的垂足,垂心与各顶点连线的中点这九点共圆
二十三.张角定理
在△ABC中,D是BC上的一点,连结AD。那么sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD。
逆定理: 如果sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD,那么B,D,C三点共线。
定理的推论:
在定理的条件下,且∠BAD=∠CAD,即AD平分∠BAC,则B D C共线的充要条件是:2cos∠BAD/AD=1/AB+1/AC
二十四.蝴蝶定理
由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
二十五.清宫定理
设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上
二十六.西姆松定理(cave定理)
过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。
二十七.角元塞瓦定理
设P为平面上一点(不在AB、BC、AC三条直线上),且(sinBAP/sinPAC)(sinACP/sinPCB)(sinCBP/sinPBA)=1则AD、BE、CF三线共点或互相平行. 推论若所引的三条线段都在△ABC 内部,则这三条直线共点。
【暂时缺图】
二十八.莫利定理
将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
二十九.斯坦纳定理
如果三角形中两内角平分线相等,则必为等腰三角形
三十.斯台沃特定理(斯氏定理)
任意三角形ABC中,D是底边BC上一点,联结AD,则有:AB^2×CD+AC^2×BD=(AD^2+BD×DC)×BC 也可以有另一种表达形式:设BD=u,DC=v,则有:AD^2=(b^2×u+c^2×v)/a-uv
三十一.笛沙格定理
平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
三十二.牛顿定理
牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
牛顿定理3 圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。.
第三篇:中值定理在不等式证明中的应用
摘 要
本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍.关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式
Abstract
This paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function.in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point.And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality.And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussed
Key words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals
目 录
摘要 ………………………………………………………………………………(I)Abstract …………………………………………………………………………(I)1 引言 ……………………………………………………………………………(1)2 拉格朗日中值定理在不等式证明中的应用 …………………………………(2)
2.1 拉格朗日中值定理…………………………………………………………(2)2.2 利用拉格朗日中值定理证明不等式………………………………………(2)2.2.1 直接公式法 „„„„„„„„„„„„„„„„„„„„„„„(2)2.2.2 变量取值法 „„„„„„„„„„„„„„„„„„„„„„„(4)2.2.3 辅助函数构造法 ………………………………………………………(5)3 泰勒中值定理在不等式证明中的应用 ………………………………………(7)3.1 泰勒中值定理…………„„„„„„„„„„„„„„„„„„„„(7)3.2 利用泰勒公式证明不等式„„„„„„„„„„„„„„„„„„„(7)3.2.1 中点取值法 „„„„„„„„„„„„„„„„„„„„„„„(7)3.2.2 端点取值法 „„„„„„„„„„„„„„„„„„„„„„„(9)3.2.3 极值取值法 „„„„„„„„„„„„„„„„„„„„„„„(9)3.2.4 任意点取值法 „„„„„„„„„„„„„„„„„„„„„„(11)4 柯西中值定理在不等式证明中的应用………………………………………(14)
4.1 柯西中值定理………………………………………………………………(14)4.2 利用柯西中值定理证明不等式……………………………………………(14)5 积分中值定理在不等式证明中的应用 ………………………………………(16)
5.1 积分中值定理„„„„„„„„„„„„„„„„„„„„„„„„(16)5.2 利用积分证明不等式………………………………………………………(16)结束语 ……………………………………………………………………………(18)参考文献 …………………………………………………………………………(19)致谢 ………………………………………………………………………………(20)引言
不等式也是数学中的重要内容,也是数学中重要方法和工具.中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理以及积分中值定理等.以拉格朗日中值定理(也称微分中值定理)为中心,介值定理是中值定理的前奏,罗尔定理是拉格朗日中值定理的特殊情形,而柯西中值定理、泰勒中值定理及定积分中值定理则是它的推广.利用中值定理证明不等式,是比较常见和实用的方法.人们对中值定理的研究,从微积分建立之后就开始了以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态.此外,在极值问题中有重要的实际应用.微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁.微分中值定理从诞生到现在的近300年间,对它的研究时有出现.特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇.不等式的证明不仅形式多种多样,而且证明方式多变,常见的方法有:利用函数的单调性证明,利用微分中值定理证明,利用函数的极值或最值证明等,在众多方法中,利用中值定理证明不等式比较困难,无从下手,探究其原因,一是中值定理的内容本身难理解,二是证明不等式,需要因式而变,对中值定理的基础及灵活性要求较高.我们在日常教学中常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一,我们有必要把这类问题单独拿出来进行研究,找出它们的共性,以方便我们日后的教学研究工作的开展.拉格朗日中值定理在不等式证明中的应用
2.1 拉格朗日中值定理
拉格朗日(J.L.Lagrange,1736-1813,法国数学家,力学家,文学家).拉格朗日中值定理 设函数fx在闭区间[a,b]上连续,在开区间a,b内可导,则在开区间(a,b)内至少存在一点x0,使得
f'x0f(a)f(b)(1)
ba或
fbfaf'x0ba.(2)拉格朗日中值定理是罗尔定理的推广,即罗尔定理是拉格朗日定理当fafb时的特殊情形.拉格朗日定理中,由于ax0b,因而可将x0表示为
x0a(ba),01.这样(1)式还可表示为
fbfaf'aba,01.(3)若令bah,则有
fahfaf'ahh,01.(4)一般称式(1)、(2)、(3)、(4)式为拉格朗日公式.2.2 利用拉格朗日中值定理证明不等式 2.2.1 直接公式法
例2.1 证明不等式sinx1-sinx2x1-x2成立.分析 首先要构造一个辅助函数fx;a 由欲证形式构成“形似”的函数区间.b 运用拉格朗日公式来判断.证明 设fxsinx,xx1,x2.由拉格朗日公式(2)可得
sinx1-sinx2f'x1x2,x1,x2.等式两边同取绝对值,则有
sinx1sinx2f'x1-x2.而
fsin'xxcos.又因为 0cos1.因此,就得到
sinx1-sinx2x1-x2.证毕.评注 此题如果单纯地应用初等数学的方法来证明,会难以得出结论,而应用了拉格朗日公式,再利用三角函数的简单知识,问题就游刃而解了.例2.2 证明不等式arctanx2arctanx1x2-x1,(x2x1)成立.分析 此题利用反三角函数的有关知识,构造一个辅助函数fxarctanx,再利用拉格朗日中值定理就可以轻轻松松地解出此题.证明 设fxarctanx,fx在x1,x2上满足拉格朗日定理的全部条件,因此有
arctanx2arctanx11(x2x1),x0x1,x2.21x0因为11,可得 21x0arctanx2arctanx1x2x1.例2.3[3] 证明pbp1(ab)apbppap1ab,(p1,ab0).证明 设函数,f(x)xp,则,f(a)f(b)apbp.不难看出f(x)在区间b,a上满足拉格朗日定理条件,于是存在b,a,使
f(a)f(b)(ab)f'().由于f'xpxp1,所以f'()pp-1,上式为
apbp(ab)pp1.因为xp当p1时为单调增函数,ba,所以
bp-1p-1ap-1.两边同时乘以pab,则得
pbp1(ab)pp1(ab)pap1(ab),即
pbp1(ab)apbppap1(ab),证毕.2.2.2 变量取值法
例2.4 证明不等式
babb-aln 成立,其中ba0.baa分析(1)根据题中式子构造一个相似函数,fxlnx和定义区间a,b.(2)利用对数的四则运算法则,将对数式整理成拉格朗日中值定理所满足的形式,从而得出结论.证明 设fxlnx,xa,b.由拉格朗日公式(3),则有
lnbb-alnb-lna.(1)aab-a由不等式01,可推得
aab-ab及代入(1),即
babb-aln.证毕.baab评注 解此题关健在于观察要证明的不等式中把对数式ln拆开成ab-abab-a.ba(ba)alnb-lna,再利用拉格朗日的公式来轻松地得出结论.例2.4 证明不等式
hln1hh,对一切h-1,h0成立.1h分析 此题首先利用对数的有关知识,构造了一个辅助函数lnx,再利用拉格朗日中值定理解出此题.证明 由拉格朗日公式(4),令a1,f(x)lnx.则有
ln1hln1h-ln1h1h01.,(1)
当h0时,由不等式 01,可推得
11h1h及
hhh.(2)1h1h当-1h0时,由不等式01,可知
11h1h0.由于h0,可推(2)式成立,将(2)式代入(1)式,就可知不等式成立.评注 证明此种不等式的关健是构造一个辅助函数,再利用初等数学的有关知识来证明不等式.例2.5 证明若x0,则ex1x.证明 令f(x)ex,则f(x)在R上连续、可导,且f'(x)ex.(0,x)情形一 当x0时,由拉格朗日定理知使
exe0e(x0).整理有exex.因为e1,所以有exx.(x,0)情形二 当x0时,由拉格朗日中值定理知,使
e0exe(0x).整理有exxe.因为此时0e1,三边同时乘以x,0xex 所以exx成立.综上所述,当x0时,exx成立.从以上例题可以发现:灵活构造“a,b”的取值,不仅可使证明过程简单,有时甚至是解题的关键.2.2.3 辅助函数构造法
例2.6[4] 设函数f(x)在a,b上连续,在a,b内可导,又f(x)不为形如,使f'()AxB的函数.证明至少存在一点(ab)证明 做辅导函数
g(x)f(a)则gx为形如AxB的函数.
因为f(x)不为形如AxB的函数,所以至少存在一点c(a,b),使
f(b)f(a)(xa),baf(b)f(a).ba
f(c)g(c),但f(a)g(a),f(b)g(b).情形一 f(c)g(c),此时
f(b)f(a)f(a)(ca)f(a)f(c)f(a)g(c)g(a)f(b)f(a)ba
cacacaba即
f(c)f(a)f(b)f(a).caba(a,c)因为a,ca,b,所以由中值定理知1,使
f(c)f(a),caf(b)f(a)从而有 f'(1).ba f'(1)情形二 f(c)g(c),此时
f(b)f(a)f(b)f(a)(ca)f(b)f(c)g(b)g(c)baf(b)f(a),bcbcbaba即
f(b)f(c)f(b)f(a).bcba因为c,ba,b,所以由拉格朗日中值定理,2(c,b)使得
f'2从而有
f'2fbfc,bcfbfa.ba综上所述,在a,b内至少有一点使原式成立.证毕.许多证明题都不能直接应用定理进行证明.利用拉格朗日中值定理证明问题时,如何构造辅助函数,是证明的关键.泰勒中值定理在不等式证明中的应用
3.1 泰勒中值定理
泰勒中值定理 如果函数f(x)在含有x0的开区间a,b内有直到n1阶导数,则对任一点x0(a,b),有
f''(x0)f(n)(x0)f(n1)()2nf(x)f(xo)f'(xo)(xx0)(xx0)(xxo)(xx0)n12!n!(n1)!其中是x0与x之间的某个值,上式称为f(x)按(xx0)的幂展开的n阶泰勒公式.下面就泰勒中值定理中函数展开点x(a,b)的不同情况来证明不等式.3.2 利用泰勒公式证明不等式 3.2.1 中点取值法
选区间中点展开是较常见的一种情况,然后在泰勒公式中取x为适当的值,通过两式相加,并对某些项进行放缩,便可将多余的项去掉而得所要的不等式.下面以实例说明.例3.1[5] 设在区间a,b内,f''(x)> 0,试证:对于a,b内的任意两个不同点x1和x2,有 f(x1x2f(x1)f(x2)).22f''xx02,2!证明 将f(x)分别在a及b处展开,得
fxfx0f'x0xx0其中是x0与x之间的某个值.上式中分别取xx1及x2,f''1x1x02,x1,x0; 2!f''2x2x02,x0,x2.fx2fx0f'x0x2x02!fx1fx0f'x1x0上面两式相加,得
fx1fx22fx0f''1x1x02f''2x2x02.2!2!因为f''(x)0,所以,fx1fx22fx0,即
xxfx1fx2 f12.22注(1)若题中条件“f''(x)0”改为“f''(x)0”,而其余条件不变,则结论改为
xxfx1fx2 f12.22(2)若例1的条件不变,则结论可推广如下:
对a,b内任意n个不同点x1,x2xn及1,2,,n(0,1)且11,有
i1nnn fixiifxi.i1i1例3.2 设函数f(x)在区间[a,b]上二阶连续可导,且f(ab)0,证明 2abMbafxdx,其中Mmaxf''x.axb243证明 将f(x)在x0ab处展开,得 2 fxfx0f'x0xx0其中是 x0与x之间的某个值.因为f(f''xx02.2!ab)0,所以有 2 fxf'x0xx0上式在a,b作定积分,然后取绝对值
f''xx02,2!abfxdxf''2f'xxxxx000dx a2!b1 2baf''x-x02Mdx2M3x-xdxb-a.0ab224 即
bafxdxMba3.2
3.2.2 端点取值法
当条件中出现f'(a)f'(b)0,而欲证式中出现厂f(a),f(b),f''(),展开点常选为区间两端点a,b,然后在泰勒公式中取x为适当的值,消去多余的项,可得待证的不等式.例3.3 函数f(x)在区间[a,b]上二阶可导,且f'(a)f'(b)0,证明:在a,b内至少存在一点,使得f''4fbfaba2.证明 将f(x)分别在a及b处展开,得
f''1xa2,1a,x; 2!f''2xb2,2x,b.fxfbf'bxb2!ab上面两式中取x,fxfaf'axabaf''1baab ffaf'a;
22!222baf''2baba ffbf'b.222!22上面两式相减,并由f'(a)f'(b)0,得
2bafbfa8(ba)2f''2f''1.f''2f''18 记
f''maxf''1f''2.其中,1或2.于是,有
2bafbfa4f'',即f''4fbfaba2.3.2.3 极值取值法
当题中不等式出现函数的极值或最值项,展开点常选为该函数的极值点或最
值点.例3.4[6] 设函数f(x))在区间a,b内二阶可导,且存在极值f(c)及点p(a,b),使f(c)f(p)0,试证:至少存在一点(a,b),使f'(c)f''()0.证明 将f(x)在x0c处展开,得
fxfcf'cxc其中, 介于c与x之间.上式取xp,并由f'(c)0,得
fpfcf''pc2,2!f''pc2,2!其中介于c与p之间.两边同乘以f(c),得
fpfcf2cf''2fcpc,2!ab(1)当x0a,时,上式取xa,得
2fx0即
f''ax02baf'',a,x0.2!82f''8ba2fx0.ab(2)当x0a,时,上式取xb,同理可得
2f''8ba2fx0,x0,b.由(1)及(2)得,存在(a,b),使得
f''8maxfx.ba2xa,b再由f''(x)的连续性,得
maxf''xxa,b8ba2xa,bmaxfx
注(1)当题中条件“连续”去掉,而其他条件不变时,结论可改为在a,b内至少存在一点,使得
f''8ba2xa,bmaxfx成立
(2)当题中条件添加maxf(x)0时,结论可改为:在a,b内至少存在一点
xa,b,使得f''()8maxf(x)成立.2xa,b(ba)3.2.4 任意点取值法
当题中结论考察f(x),f'(x),f''(x)的关系时,展开点常选为该区间内的任意点,然后在泰勒公式中取x为适当的值,并对某些项作放缩处理,得所要的不等式.例3.5[7] 函数f(x)在区间a,b上二阶可导,且f(x)≤A,f''(x)≤ B,其中A,B为非负常数,试证:f'x2ABba,其中x(a,b).ba2f''xx02,2!证明 将f(x)在x0(a,b)处展开,fxfx0f'x0xx0其中介于x0与x之间.上式中分别取xa及b,fafx0f'x0xx0fbfx0f'x0xx0f''1ax02,1a,x0; 2!f''2bx02,2x0,b.2!上面两式相减,得
fbfaf'x0ba122f''2bx0f''1ax0.2
即
f'x0fbfa122f''2bx0f''1ax0.ba2ba故
f'x01fbfa1f''2bx02f''1ax02 ba2ba2ABbx02x0a2 ba2ba 2ABb-a.b-a22AB即f'xba,再由x0的任意性,ba2故有
f'x2ABba,其中x(a,b).ba2例3.6 函数f(x)在区问a,b上二阶可导,且f(a)f(b)0,Mmaxf''(x),试证x[a,b]baMbafxdx.123证明 将f(x)在ta,b处展开,fxftf'txt其中车于t与x之间.上式中分别取xa及b,faftf'txtf''1at2,1a,t; 2!f''2bt2,2t,b.fbftf'txt2!f''xt2,2!
上边两式相加,得
ft1122f'tab2tf''1atf''2bt.24上式两端在a,b上对t作积分,ba1b1b22ftdtf'tab2tdtf''1atf''2btdt
2a4ab1b22ftdtf''1atf''2btdt.a4a于是有
ba1b22ftdtf''1atf''2btdt,8aba1b2ftdtaf''1atdt8b2 [f''bt]dt2abMb2 aatdt8即
Mba.btdta1232baMbafxdx.123注 从不等式的特点出发,应用实际范例给出了泰勒公式中展开点选取的几种情况:区间的中点,已知区间的两端点,函数的极值点或最值点,已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好地运用泰勒中值定理证明不等式.柯西中值定理在不等式证明中的应用
4.1 柯西中值定理
柯西中值定理 设函数fx,gx满足
(1)在闭区间a,b上连续;
(2)在开区间a,b内可导;
(3)对任一xa,b有gx0,则存在a,b,使得fbfa/gbga=f'/g'.4.2 利用柯西中值定理证明不等式
例4.1 设函数fx在-1,1内可微,f00,f'x1,证明:在-1,1内,fx1.证明 引入辅助函数gxx,在0,x或x,o上x1,1应用柯西中值定理,得
fx-f0f'f'.gx-g01
因为f00,g00,且fx1,所以
fxf1fxx1.gx例4.2[8] 证明不等式1xlnx1x21x2x0.证明 令fxxlnx1x2,gx1x21,则上式转化为fxgxx0.由于上应用柯西中值定理,得
fxfxf0f,gxgxg0g于是fxgx又转化为f'g'.因为
2ln1fg1212112ln12
1而当x0时,12ln120,所以
f1fgfxgx, g即
1xlnx1x21x2.例4.3[9]
若0x1x2x2x1
2,求证:ex2ex1cosx1cosx2ex1.x1ex2ex1ex1,证明 证明eecosx1cosx2e,实际上只需证
cosx1cosx2设ftet,gtcost,则ft,gt在x1,x2上,满足柯西中值定理条件,所以
fx2fx1f'c cx1,x2.gx2gx1g'cex2ex1ee即
0x1cx2.cosx2cosx1sinc2ex2ex1cosx1cosx2ec1cosx1cosx2eccosx1cosx2ex1.sinc其中用到11及ex是单调增加函数.sinc 积分中值定理证明不等式
5.1积分中值定理
定理5.1(积分第一中值定理)若fx在区间a,b上连续,则在a,b上至少存在一点使得
fxdxfba,ab.
ab 定理5.2(推广的积分第一中值定理)若fx,gx在闭区间a,b上连续,且gx在a,b上不变号,则在a,b至少存在一点,使得
fxgxdxfgxdx,ab.aabb5.2 利用积分中值定理证明不等式
例5.1[11]
11x91dx.证明
1010201xb 证明 估计积分fxgxdx的一般的方法是:求fx在a,b的最大值Ma和最小值m,又若gx0,则
mgxdxfxgxdxMgxdx.aaabbb本题中令
fx因为
111,x0,1.21x10x1.,gxx90,1x所以
111119x919dxxdxdxx.0001010221x例5.2 证明2e14ex2xdx2e2.02 证明 在区间0,2上求函数fxex2x的最大值M和最小值m.fx2x1ex2x,令fx0,得驻点x1.21112上的最小值,而f2e2为比较f,f0,f2知fe4为fx在0,222上的最大值.由积分中值定理得 fx在0,e即
14200exxdxe220,222eex2xdx2e2.0142注 由于积分具有许多特殊的运算性质,故积分不等式的证明往往富有很强的技巧性.在证明含有定积分的不等式时,也常考虑用积分中值定理,以便去掉积分符号,若被积函数是两个函数之积时,可考虑用广义积分中值定理.如果在证明如1和2例题时,可以根据估计定积分的值在证明比较简单方便.结束语
深入挖掘渗透在这一定理中的数学思想,对于启迪思维,培养创造能力具有重要 意义.伟大的数学家希尔伯特说“数学的生命力在于联系” .数学中存在着概念之间的亲缘关系,存在着理论结构各要素之间的联系,存在着方法和理论之间的联系,存在着这一分支邻域与那一分支邻域等各种各样的联系,因此探索数学中各种各样的联系乃是指导数学研究的一个重要思想.实际上,具体地分析事物的具体联系,是正确认识和改造客观世界必不可少的思维方式在一定的意义上说,数学的真正任务就在于揭示数学对象之间、数学方法之间的内在固有联系,这一任务的解决不断推动数学科学向前发展.
中值定理在一些等式的证明中,我们往往容易思维定式,只是对于原来的式子要从哪去证明,很不容易去联系其它,只从式子本身所表达的意思去证明.今后应当注重研究中值定理各定理之间的联系,更好的应用中值定理解决不等式的证明.中值定理是一条重要定理,它在微积分中占有重要的地位,起着重要的作用,参考文献
[1] 高尚华.华中师范大学第三版.数学分析(上)[M].北京:高等教育出版社,2001,(06).[2] 董焕河、张玉峰.高等数学与思想方法[M].陕西:西安出版社,2000,(09).[3] 高崚峰.应用微分中值定理时构造辅助函数的三种方法[J].四川:成都纺织高等专科学校学报.2007,(07):18-19.[4] 张太忠、黄星、朱建国.微分中值定理应用的新研究[J].江苏:南京工业职业技术学院学报.2007,(8):12-14.[5] 张元德、宋列侠.高等数学辅导30讲[M].清华大学出版社,1994,(6).[6]AI Jing-hua.Characters Equal Definitions and application of Convex Function[J].Journal of Kaifeng University,Vol.17,No.2,Jun.2003:132-136.[7] 钟朝艳.Cauchy中值定理与Taylor定理得新证明[J].云南:曲靖师专学报.1998,(9):9.[8] 荆天.柯西中值定理的证明及应用[J].北京:科技信息(学术版).2008,(06):14.[9] 葛健牙、张跃平、沈利红.再探柯西中值定理[J].浙江:金华职业技术学院学报.2007,(06):23.[10]刘剑秋、徐绥、高立仁.高等数学习题集(上)[M].天津:天津大学出版社,1987,(07).[11] 刘法贵、左卫兵.证明积分不等式的几种方法[J].高等数学研究,2008,(06).[12] 蔡高厅.高等数学[M].天津大学出版社,1994,(06).[13] W.Rmdin,Principle of Mathematical Analysis(Second edition)[J].Mc Graw-Hill,New York,1964,(09):96-102.致谢
从2008年9月到现在,我在黄淮学院已经渡过接近四年的时光.在论文即将完成之际,回想起大学生活的日日夜夜,百感交集.在大学学习的四年时间里,正是老师们的悉心指导、同学们的热情关照、家人的理解支持,给了我力量,从而得以顺利完成学业.在此对他们表示诚挚的谢意!本论文是在导师钟铭的悉心指导下完成的.导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远.他对数学理论在经济,金融领域中的应用的想法和建议,使学生受益匪浅、铭刻终生.本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血.在此,谨向导师表示崇高的敬意和衷心的感谢!
感谢数学科学系其他老师讲授的数学基础课程,为我夯实了数学研究的理论基础,他们是李东亚老师、魏本成老师、庞留勇老师、侯亚林老师等.感谢数学系全体领导、老师、同学创造了一个宽松,自由的学习环境.此外我还感谢室友冯克飞、王宁对我的论文完成过程中给我的指导,她们深厚的数学功底以及对数学应用软件操作等方面的知识给了我很大的帮助.
最后深深地感谢我的父母,把最诚挚的感谢送给他们,感谢他们无微不至的关心和支持,感谢他们的无私奉献以及为我所做的一切.
第四篇:李明波四点定理的平面几何证明
李明波四点定理的平面几何证明
郝锡鹏
提要2009年9月19日,李明波导出和角余弦恒等式 cos2cos2cos2()2coscoscos()1 并用此给出他四点定理的一个平面几何证明。1和角余弦恒等式
2009年9月19日,李明波由和角三角函数公式
cos()coscossinsin下推
cos()coscoscos2cos2,(1cos2)(1cos2)[coscoscos()]2,1cos2cos2cos2cos2
cos2cos22coscoscos()cos2(),从上式两面消去cos2cos2再移项便得恒等式
cos2cos2cos2()2coscoscos()12四点定理的证明
在图1中,李明波根据余弦定理得
a2c2b
2cos
12ac
b2c2a2
cos1
2bc
cos()a2b2c2
2ab(1)(2)3-1)3-2)3-3)(((B
B
a
A
c c1
a1
图 1
b1 c1
b1
b
C
A c
D
C
a1
图 2
D
将(3-1)、(3-2)、(3-3)代入(2式)得
a2c2b122b2c2a122a2b2c122()()()
2ac2bc2aba2c2b12b2c2a12a2b2c12
21
2ac2bc2ab
上式两面同乘4a2b2c2去分母得
b2(a2c2b12)2a2(b2c2a12)2c2(a2b2c12)2
(a2c2b12)(b2c2a12)(a2b2c12)4a2b2c2(4)
将(4)展开并进行繁杂的整理便得四点定理:
a2a12(a2a12b2b12c2c12)b2b12(a2a12b2b12c2c12)
c2c12(a2a1b2b12c2c1)
2a2b2c1a2b12c2a12b2c2a12b12c12(5)
在图2中,上述证明过程的(3-3)式可改写为cos[360()]
a2b2c12
cos(),所以(5)式同样也适合于图2。
2ab
第五篇:解析法证明平面几何经典问题--举例
五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试?
例
1、设MN是圆O外一直线,过O作OA⊥MN于A,自A引两条直线分别交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)
B N
(例1图)(例2图)
例
2、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
【部分题目解答】
例
1、(难度相当于高考压轴题)
如图,以MN为x轴,A为原点,AO为Y轴建立坐标系,设圆的方程为:x2(y-a)2r2,设直线AB的方程为:ymx,直线AD的方程为:ynx,点B(x1,y1)、C(x2,y2);
D(x
3,y3)、E(x4,y4);则B、C222x(y-a)r,消去y得:(1m2)x2-2amxa2-r2{ymx2ama2-r
2由韦达定理知:x1x22;x1x22,m1m12ana2-r2
同理得:x3x42;x3x42, n1n1直线CD方程为:y-y2y2-y3(x-x2), x2-x
3x3y2-x2y3, y2-y3由此得Q点横坐标:xQ
同理得P点横坐标:xPx1y4-x4y1 ,y4-y
1xy-xyxy-xy故,要证明APAQ,只需证明:xQ-xP3223-1441, y2-y3y4-y1
即证明:(x3y2-x2y3)(y4-y1)(-x1y4-x4y1)(y2-y3)
将上式整理得:y3y4(x1x2)y1y2(x3x4)x1y2y4x2y1y3x3y2y4x4y1y3
注意到:y1mx1,y2mx2;y3nx3,y4nx4,代入整理得:
左边m2x1x2(x3x4)n2x3x4(x1x2),右边mn[x1x2(x3x4)x3x4(x1x2)] 把上述韦达定理的结论代入得:
22a2-r22an2am2amn(a2-r2)(mn)2a-r左边m22n22 22m1n1n1m1(m1)(n1)2
a2-r22ana2-r22am2amn(a2-r2)(mn)右边mn(2)m1n21n21m21(m21)(n21)
可见:左边=右边,故xQ-xP,即APAQ.证毕!
【此题充分体现:化归思想、设而不求思想方法、数形结合方法、以及分析计算的能力】 标系.例
2、分析:如右图,建立坐
总体思路:设点A、B、C、D坐标后,求出直线AD、从而求出两个角度的正切值,证明这两个角度问题的关键是:如何设点C、D而C、D两点是相互独立运动的,故把点C、D设AD=BC= r,则C点可以看作是以B为圆心,r上的动点,类似看待D点,故,设
C(arcosθ,rsinθ)、D(-arcos,rsin), 从而得N(cosθcossinθsin,)22
易得:kBCtan,kADtan【此处充分展现了圆的,参数方程的美妙之处】kMN
sinθsintan;cosθcos2