第一篇:高中数学新课程创新教学设计案例50篇-1-集合的概念和表示方法
集合的概念和表示方法 教材分析
集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合. 教学目标
1.初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法. 2.初步了解“属于”关系的意义,理解集合中元素的性质.
3.掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力. 任务分析
这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握. 教学设计
一、问题情境
1.在初中,我们学过哪些集合? 2.在初中,我们用集合描述过什么? 学生讨论得出:
在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.
3.“集合”一词与我们日常生活中的哪些词语的意义相近? 学生讨论得出: “全体”、“一类”、“一群”、“所有”、“整体”,„„ 4.请写出“小于10”的所有自然数.
0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合. 5.什么是集合?
二、建立模型
1.集合的概念(先具体举例,然后进行描述性定义)
(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:
a是集合A中的元素,称a属于集合A,记作a∈A; a不是集合A中的元素,称a不属于集合A,记作aA. 例:设B={1,2,3},则1∈B,4B. 2.集合中的元素具备的性质
(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的. 例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.
例:集合{1,2}与集合{2,1}表示同一集合. 3.常用的数集及其记法
全体非负整数的集合简称非负整数集(或自然数集),记作N. 非负整数集内排除0的集合简称正整数集,记作N*或N+; 全体整数的集合简称整数集,记作Z;
全体有理数的集合简称有理数集,记作Q; 全体实数的集合简称实数集,记作R. 4.集合的表示方法 [问 题]
如何表示方程x2-3x+2=0的所有解?(1)列举法
列举法是把集合中的元素一一列举出来的方法. 例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法
描述法是用确定的条件表示某些对象是否属于这个集合的方法. 例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}. ②不等式x-3>2的解集可表示为{x|x-3>2}. ③Venn图法
例:x2-3x+2=0的解集可以表示为(1,2). 5.集合的分类
(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=. 注:对于无限集,不宜采用列举法.
三、解释应用 [例 题]
1.用适当的方法表示下列集合.
(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集. 2.用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.
3.已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})
4.用描述法表示在平面直角坐标中第一象限内的点的坐标的集合. [练习]
1.用适当的方法表示下列集合.
(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合. 2.用描述法表示下列集合.(1){3,9,27,81,„}.(2)
四、拓展延伸
把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}. 点 评
这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.
第二篇:高中数学新课程创新教学设计案例50篇 36 向量的概念
向量的概念
教材分析
向量是近代数学中重要和基本概念之一,它集“大小”与“方向”于一身,融“数”、“形”于一体,具有几何形式与代数形式的“双重身份”,是高中数学重要的知识网络的交汇点,也是数形结合思想的重要载体.这节通过对物理中的位移和力的归纳,抽象、概括出向量的概念、有向线段、向量的表示、零向量、单位向量、平行向量、相等向量、共线向量的准确含义.与数学中的许多概念一样,都可以追溯它的实际背景.这节的重点是向量的概念、相等向量的概念和向量的几何表示等.难点是向量的概念.
教学目标
1.通过对平面向量概念的抽象概括,体验数学概念的形成过程,培养学生的抽象概括能力和科学的思维方法,使学生逐步由感性思维上升为理性思维.
2.理解向量的概念,会用有向线段表示向量,会判断零向量,单位向量,平行的、相等的、共线的向量.
任务分析
在这之前,学生接触较多的是只有大小的量(数量).其实生活中还有一种不同于数量的量———向量.刚一开始,学生很不习惯,但可适时地结合实例,逐步让学生理解向量的两个基本要素———大小和方向,再让学生于实际问题中识别哪些是向量,哪些是数量.这样由具体到抽象,再由抽象到具体;由实践到理论,再由理论到实践,可使学生比较容易地理解.紧紧抓住向量的大小和方向,便于理解两个向量没有大小之分,只有相等与不相等、平行与共线等.要结合例、习题让学生很好地理解相等向量(向量可以平移).这些均可为以后用向量处理几何等问题带来方便.
教学设计
一、问题情景
数学是研究数量关系和空间形式的科学.思考以下问题:
1.在数学或其他学科中,你接触过哪些类型的量?这些量本质上有何区别?试描述这些量的本质区别.
2.既有大小又有方向的量应如何表示?
二、建立模型 1.学生分析讨论
学生回答:人的身高,年龄,体重;……图形的面积,体积;物体的密度,质量;……物理学中的重力、弹力、拉力,速度、加速度,位移……
引导学生慢慢抽象出数量(只有大小)和向量(既有大小又有方向)的概念. 2.教师明晰
人们在长期生产生活实践中,会遇到两种不同类型的量,如身高、体重、面积、体积等,在规定的单位下,都可以用一个实数表示它们的大小,我们称之为数量;另一类,如力、速度、位移等,它们不仅有大小,而且有方向.作用于某物体上的力,它不仅有大小,而且有作用方向;物体运动的速度既有快慢之分,又有方向的区别.这类既有数量特性又有方向特性的量,就是我们要研究的向量.
在数学上,往往用一条有方向的线段,即有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.向量不仅可以用有向线段表示,也可用a,b,c,…表示,还可用表示向量的有向线段的起点和终点字母表示,如就是向量的长度(模),记作,向量的大小.长度等于
.长度为零的向量叫零向量,记作0或1的向量叫作单位向量.
方向相同或相反的非零向量叫平行向量,记作a∥b,规定0∥a(a为任一向量)长度相等且方向相同的向量叫作相等的向量,记作a=b.任意两个相等的非零向量都可用同一条有向线段来表示,并且与有向线段的起点无关.在同一平面上,两个平行的长度相等且指向一致的有向线段可以表示同一向量.因为向量完全由它的方向和模决定.
任一组平行向量都可以移动到同一直线上,因此,平行向量也叫“共线向量”. 3.提出问题,组织学生讨论
(1)时间、路程、温度、角度是向量吗?速度、加速度、物体所受重力是向量吗?(2)两个单位向量一定相等吗?(3)相等向量是平行向量吗?
(4)物理学中的作用力与反作用力是一对共线向量吗?
(5)方向为南偏西60°的向量与北偏东60°的向量是共线向量吗?强调:大小、方向是向量的两个基本要素,当且仅当两个向量的大小和方向两个要素完全相同时,两个向量才相等.注意:相等向量、平行向量、共线向量之间的异同.
三、解释应用 [例 题]
如图,边长为1的正六边形ABCDEF的中心为O,试分别写出与线的向量,以及单位向量.
相等、平行和共
解:都是单位向量.
[练习]
1.如图,D,E,F分别是△ABC各边的中点,试写出图中与相等的向量.
2.如果四边形ABCD满足,那么四边形ABCD的形状如何?
3.设E,F,P,Q分别是任意四边形ABCD的边AB,BC,CD,DA的中点,对于,哪些是相等的向量,哪些方向是相反的向量?
4.在平面上任意确定一点O,点P在点O“东偏北60°,3cm”处,点Q在点O“南偏西30°,3cm”处,试画出点P和Q相对于点O的向量.
5.选择适当的比例尺,用有向线段分别表示下列各向量.(1)在与水平成120°角的方向上,一个大小为50N的拉力.(2)方向东南,8km/h的风的速度.(3)向量
四、拓展延伸
1.如图,在ABCD中,E,F分别是CD,AD的中点,在向量中相等的向量是哪些?为什么?
2.数能进行运算,那么与数的运算类比,向量是否也能进行运算?
案例点评
这篇案例设计完整,思路清晰.该案例首先通过实例阐述了向量产生的背景,然后归纳、抽象了向量、平行向量、相等向量等概念,充分体现了数学教学的本质是教学思维过程的教学,符合新课程标准的精神.例题与练习由浅入深,完整,全面.“拓展延伸”的设计有新意,有深度.为学生数学思维能力、创造能力的培养提供了平台.
第三篇:第二部分高中数学新课程创新教学设计案例
第二部分 高中数学新课程创新教学设计案例
正弦函数的性质
教材分析
这篇案例的内容是在学生已经掌握正弦函数图像的基础上,通过观察、归纳和总结,得出正弦函数的五个重要性质,即正弦函数的定义域、值域、周期性、奇偶性和单调性.教学重点是正弦函数的图像特征及五个重要性质,难点是周期函数及最小正周期的意义.由于周期函数的概念比较抽象,因此,在引入定义之前,应注意通过具体实例让学生充分体会这种“周而复始”的现象,体会新概念的形成过程.
教学目标
1.引导学生通过观察,分析y=sinx的图像,进而归纳、总结出正弦函数的图像特征,并抽象出函数性质,培养学生观察、分析图像的能力和数形结合的能力.
2.理解和掌握正弦函数的五个重要性质,能够解决与正弦函数有关的函数的值域、最小正周期及单调区间等简单问题.
3.使学生进一步了解从特殊到一般、从一般到特殊的思维方法,体会分析、探索、化归、类比的科学研究方法在解决数学问题中的应用.
4.使学生初步体会事物周期变化的一些奥秘,进一步提高学生对数学的学习兴趣.
任务分析
这节内容是在学生已经掌握了正弦函数图像特征的基础上,运用数学的符号语言把图像特征进一步“量化”,从而得出正弦函数的五个性质.一般来说,从正弦曲线的形状,可以很清晰地看出正弦函数的定义域、值域、最值、符号、周期性、奇偶性、单调性等,但对于周期性及单调区间的表述,学生可能会有一定的困难.因此,在引入周期函数的定义之前,要让学生充分观察图像,必要时可把物理中的弹簧振动的实验再做一做,让学生体会“周而复始”的现象,体会概念的形成过程.
此外,对于周期函数,还应强调以下几点: 1.x应是“定义域内的每一个值”.
2.对于某些周期函数,在它所有的周期中,不一定存在一个最小的正周期,即某些周期函数没有最小正周期. 3.对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期.今后涉及的周期,如果不加特殊说明,一般都是指函数的最小正周期.
教学设计
一、问题情境
1.教师提出问题,引导学生总结
我们学习过正弦函数图像的画法,并通过观察图像,得到了正弦曲线的一些特征,那么这些特征体现了正弦函数怎样的性质呢?
用投影胶片展示正弦曲线,引导学生探索正弦函数的性质:
注:由此学生得出正弦函数的如下性质:(1)定义域为R.
(2)值域为[-1,1],当且仅当x=2kπ+当且仅当x=2kπ-
(k∈Z)时,正弦函数取得最大值1,(k∈Z)时,正弦函数取得最小值-1.
注:在此处,教师应提醒学生注意前面的“2kπ”,使学生初步感受一下正弦函数的“周而复始”性.
2.教师进一步提出问题
从正弦曲线我们注意到,函数y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π],…时的图像与x∈[0,2π]的形状完全一样,只是位置不同,这种特征体现了正弦函数的什么性质呢?
(设计目的:引导学生从物理中弹簧的振动,即小球在平衡位置的往复运动,体会事物的“周期性”变化)
(2)数学中的这种周期性变化能否用一个数学式子来体现?
二、建立模型 1.引导学生探究
2.教师明晰
通过学生的讨论,归纳出周期函数的定义:
一般地,对于函数y=f(x),如果存在一个非零常数T,使定义域内的每一个x值,都满足f(x±T)=f(x),那么函数f(x)就叫作周期函数,非零常数T叫作这个函数的周期.
说明:若学生归纳和总结出周期函数的如下定义,也应给以充分的肯定.
如果某函数对于自变量的一切值每增加或减少一个定值,函数值就重复出现,那么这个函数就叫作周期函数.
给出最小正周期的概念:对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫作它的最小正周期.教科书中今后涉及的周期,如果不加特殊说明,一般都是指函数的最小正周期.
3.深化定义的内涵
(1)观察等式sin(y=sinx的周期?为什么?
+)=sin是否成立?如果成立,能不能说是正弦函数(2)函数f(x)=c是周期函数吗?它有没有最小正周期? 3.归纳正弦函数的性质
通过观察图像,我们得到了正弦函数的定义域、值域、周期性等性质,除此之外,正弦函数还有哪些性质呢?
教师引导学生归纳出以下两条性质:
奇偶性:由诱导公式sin(-x)=-sinx,知正弦函数是奇函数,其图像关于原点对称. 单调性:观察正弦曲线可以看出,当x由-由-1增大到1;当x由
增大到
增大到时,曲线逐渐上升,sinx的值
时,曲线逐渐下降,sinx的值由1减小到-1.因此,+2kπ](k∈Z)上都是增函数,其值从-1+2kπ](k∈Z)上都是减函数,其值从1减正弦函数在每一个闭区间[-增大到1;在每一个闭区间[小到-1.
三、解释应用 1.例题分析
+2kπ,+2kπ,例1 求使下列函数取得最大值和最小值的x的集合,并说出最大值和最小值是什么.(1)y=sin2x.
(2)y=sinx+2.
(3)y=asinx+b.
(4)y=2cos2x+5sinx-4.
解:(1)当2x=2kπ+(k∈Z),即x=kπ+(k∈Z)时,函数y=sin2x取得最
(k∈Z)时,函数y=sin2x大值,最大值是1;当2x=2kπ-取得最小值,最小值是-1.
(k∈Z),即x=kπ-∴使函数取得最大值的x的集合为{x|x=kπ+取得最小值的x的集合为{x|x=kπ-
(k∈Z)},最大值是1;使函数
(k∈Z)},最小值是-1.
(2)由于函数y=sinx与函数y=sinx+2同时取得最大值和最小值.因此,当x=2kπ+(k∈Z)时,函数y=sinx+2取得最大值,最大值为3;当x=2kπ-
(k∈Z)时,函数y=sinx+2取得最小值,最小值为1.
∴使函数取得最大值的x的集合为{x|x=2kπ+取得最小值的x的集合为{x|x=2kπ-
(k∈Z)},最大值为3;使函数
(k∈Z)},最小值为1.
(3)当a>0时,使函数取得最大值时的x的集合为{x|x=2kπ+=a+b;使函数取得最小值时的x的集合为{x|x=2kπ-
(k∈Z)},ymax
(k∈Z)},ymin=-a+b. 当a<0时,使函数取得最大值时的x的集合为{x|x=2kπ-a+b;使函数取得最小值时的x的集合为{x|x=2kπ+
(k∈Z)},ymax=-
(k∈Z)},ymin=a+b.
(4)y=2cos2x+5sinx-4=-2sin2x+5sinx-2=
设t=sinx,则y=二次函数的最大值和最小值问题了.,且t∈[-1,1],于是问题就变成求闭区间上当t=1,即sinx=1时,ymax=1,取最大值时x的集合为{x|x=2kπ+
(k∈Z)};
当t=-1,即sinx=-1时,ymin=-9,取最小值时x的集合为{x|x=2kπ-∈Z)}.[练习]
求下列函数的最值,以及使函数取得值时的自变量x的集合.
(k(1)y=|a|sinx+b.
(2)y=-sin2x+例2 求下列函数的周期.
sinx+.
(1)y=sin2x.
(2)y=.
解:(1)要求函数y=sin2x的周期,只须寻求使等式sin2(x+T)=sin2x恒成立的最小正数T即可.
∵使sin(2x+2T)=sin2x恒成立的正数2T的最小值是2π,∴当2T=2π时,T=π. 因此,函数y=sin2x的周期为π.
(2)要求函数y=的周期,只须寻求使等式 2.教师启发,诱导学生自主反思
(1)从上面的例题分析中,你是否有所发现?(这类函数的周期好像只与x的系数有关)
(2)一般地,函数y=Asin(ωx+φ)(其中A≠0,ω>0,x∈R)的周期是多少? [要求函数y=Asin(ωx+φ)的周期,只须寻求使等式Asin[ω(x+T)+φ]=Asin(ωx+φ),即Asin(ωx+φ+ωT)=Asin(ωx+φ)恒成立的最小正数T即可.
∵使Asin(ωx+φ+ωT)=Asin(ωx+φ)恒成立的正数ωT,最小值是2π,∴当ωT=2π时,T=.因此,函数y=Asin(ωx+φ)(A≠0,ω>0,x∈R)的周期为3.巩 固 [练习] 求下列函数的周期.
4.进一步强化
例3 不求值,指出下列各式大于零还是小于零.
例4 确定下列函数的单调区间.(1)y=1-sin3x.
(2)y=log2sin3x.
四、拓展延伸
1.若常数T为f(x)的周期,nT(n∈N*)是否也是它的周期? 2.你能证明正弦函数的最小正周期是2π吗?
3.某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下面是该港口的水深表: 表35-1
经过长时间的观察,描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数y=Asinωt+B的图像.
(1)试根据数据表和曲线,求出函数y=Asinωt+B的表达式.
(2)一般情况下,船舶航行时船底同海底的距离不少于4.5m时是安全的.如果某船的吃水深度(船底与水面的距离)为7m,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间(忽略离港用的时间)?
第四篇:高中数学新课程创新教学设计案例50篇 31 角的概念的推广
角的概念的推广
教材分析
这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.
教学目标
1.通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2.理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.
3.通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.
任务分析
这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.
教学设计
一、问题情境 [演 示] 1.观览车的运动.
2.体操运动员、跳台跳板运动员的前、后转体动作. 3.钟表秒针的转动. 4.自行车轮子的滚动. [问 题] 1.如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?
2.在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角? 3.钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角? 4.当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?
显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.
二、建立模型
1.正角、负角、零角的概念
在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.
2.象限角
当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.
3.终边相同的角
在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即
390°=30°+360°,(k=1); -330°=30°-360°,(k=-1).
设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.
三、解释应用 [例 题]
1.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.
(2)650°.
(3)-950°5′.
2.分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.
(1)60°.(2)-21°.(3)363°14′. 3.写出终边在y轴上的角的集合.
解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为
S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为
S2={β|β=270°+k·360°,k∈Z}= {β|β=90°+(2k+1)·180°,k∈Z}. 于是,终边在y轴上的角的集合为
S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.
注:会正确使用集合的表示方法和符号语言. [练习]
1.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.
(1)45°.(2)-30°.(3)420°.(4)-225°. 2.辨析概念.(分别用集合表示出来)
(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角. 3.一角为30°,其终边按逆时针方向旋转三周后的角度数为.
4.终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.
四、拓展延伸
1.若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是. 2.如果α在第二象限时,那么2α,是第几象限角?
注:(1)不能忽略2α的终边可能在坐标轴上的情况.
(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)
点 评
这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.
第五篇:新课程高中数学教学设计与案例
新课程高中数学教学设计与案例
李代友
直线与平面平行的性质
1.教学目的
(1)通过教师的适当引导和学生的自主学习,使学生由直观感知、获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理;
(2)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性;
(3)通过命题的证明,让学生体会解决立体几何问题的重要思想方法——化归思想,培养、提高学生分析、解决问题的能力。2.教学重点和难点
重点:直线与平面平行的性质定理;
难点:直线与平面平行性质定理的探索及P61例3。(人教版)3.教学基本流程
复习相关知识并由现实问题引入课题
引导学生探索、发现直线与平面平行的性质定理 分析定理,深化定理的理解 直线与平面平行的性质定理的应用 学生练习,反馈学习效果 小结与作业4.教学过程
教师活动学生活动设计意图【复习】以提问的形式引导学生回顾相关的知识:线线、线面的位置关系及判定线面平行的方法。思考并回答问题。温故知新,为新课的学习做准备。【引入】(1)提出例3给出的实际问题,让学生稍作思考;
(2)点明该问题解决的关键是由条件“棱BC平行于面AC”如何在木料表面画线,使得工人师傅按照画线加工出满足要求的工件;
(3)引入课题——在我们学习了《直线与平面平行的性质》这一节课之后,我们就知道如何解决这个实际问题了。思考问题,进入新课的学习。通过实际例子,引发学生的学习兴趣,突出学习直线和平面平行性质的现实意义。【设问】
(1)提出本节《思考》的问题(1):如果一条直线与平面平行,那么这条直线是否与这个平面内的所有直线都平行? 1 引导学生做小实验:利用笔和桌面做实验,把一支笔放置到与桌面所在平面平行的位置上,把另一支笔放置在桌面,笔所在的直线代表桌面所在平面上的一条直线,移动桌面上的笔到不同的位置,观察两笔所在直线的位置关系。
(2)一条直线与平面平行,那么这条直线与平面内的直线有哪些位置关系? 分析:a∥αa与α无公共点 a与α内的任何直线都无公共点 a与α内的直线是异面直线或平行直线。
(1)学生动手做实验,并观察得出问题的结论:与平面平行的直线并不与这个平面内的所有直线都平行。(2)学生由实验结果猜想问题的答案,再由教师的引导进行严谨的分析,确定猜想的正确性。通过学生的动手实验,得出问题的结论,提高学生的探索问题的热情。续表
教师活动学生活动设计意图【探究】一条直线与一个平面平行,在什么条件下,平面内的直线与这条直线平行? 讲述:与平面平行的直线,和平面内的直线或是异面直线或是平行直线,它们有一个区别是异面直线不共面,而平行直线共面,那么如何利用这个不同点,寻找这些平行直线呢? 长方体ABCD-ABCD中,AC平行于面ABCD,请在面ABCD内找出一条直线与AC平行。分析:AC与AC这两条平行直线共面,同在面AACC内,可见AC是过AC的平面AACC与面ABCD的交线。
(2)在面ABCD内,除了AC还有直线与AC平行吗?如果有,可以通过什么方法找到? 利用课件演示AC任意作一平面AEFC与面ABCD相交于线EF,验证学生的猜想。
分析:因为AC∥面ABCD,所以AC与这个面内的直线EF没有公共点,由大家的这个方法做出直线EF,就使得EF与AC共面,故EF∥AC。学生随着教师的引导,思考问题,回答问题。(1)根据长方体的知识,学生能够找到直线AC与AC平行。随教师的引导,发现AC的特殊位置关系。(2)由上面特殊例子的启发,学生逐渐形成对问题答案的猜想,随教师的引导,证明猜想的正确性。以长方体为载体,引导学生猜想问题成立的条件,推导出定理。续表教师活动学生活动设计意图【剖析定理】(1)证明定理;(2)分析定理成立的条件和结论;(3)指导学生阅读课本60页倒数第一段的内容。要求学生认真听教师的分析,看定理的证明过程,阅读和理解课本60页倒数第一段的内容。深化学生对定理的理解,明确该定理给出了一种作平行线的重要方法。【巩固练习】
一、提出本节开始提出的问题(2),让学生自由发言。(不局限只有引平行线的方法)
二、判断题
(1)如果a、b是两条直线,且a∥b,那么a平行于经过b的任何平面。(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。
(3)如果直线a、b和平面α满足a∥α,b∥α,那么a∥b。学生自由举手发言,说明理由。通过练习再次深化对定理的理解。【讲解例题】例
3、例4要求学生跟随教师的分析引导,自己思考和解决问题。让学生体会定理的现实意义与重要性及解决立体几何问题的重要思想方法——化归思想【课堂练习】 已知:α∩=CD,β∩γ=AB,AB∥α,α∩γ=EF, 求证:CD∥EF
选取几份有代表性的做法,利用投影仪,讲评练习,反馈学习效果。及时解决学生学习上存在的问题【小结】(1)直线与平面平行的性质定理;(2)直线与平面平行性质定理的应用。
【作业】习题22A组第5、6题总结归纳学习内容,安排适当的课后练习