第一篇:六年上册《比的基本性质》教学设计
比的基本性质
教学内容:第50~51页内容及相关练习。教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。教学重点:理解比的基本性质
教学难点:正确应用比的基本性质化简比 教学准备:课件,答题纸,实物投影。教学过程:
一、复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。2.你能直接说出700÷25的商吗?(1)你是怎么想的?(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。预设:根据比与除法、分数的关系进行验证;根据比值验证。3.全班验证。
;
;
16:20=(16○□):(20○□)。4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)5.质疑辨析,深化认识。利用比的基本性质做出准确判断:(1)
()
(2)
()
(3)
()
(4)比的前项乘3,要使比值不变,比的后项应除以3。
()
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。预设:前项、后项互质的整数比称为最简整数比。2.从下列各比中找出最简整数比,并简述理由。
3:4;
18:12;
19:10;
(二)初步应用。;
0.75:2。
1.化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=():()。预设:除以最大公因数和逐步除以公因数两种方法,但重点强调除以最大公因数的方法。
2.化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的最大公因数就可以了,但是像:和0.75:2,这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。32:16;
48:40;
0.15:0.3; ;
。
四、巩固练习
(一)基础练习1.教材第53页第4题。把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。(3)某企业去年实际产值与计划产值的比是275万:250万。2.教材第53页第6题。
(二)拓展练习(PPT课件出示)学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加(2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(男生和全班人数的比是(),女生和全班人数的比是(五、课堂小结
这节课你有什么收获?还有什么疑问?
。),))
第二篇:《比的基本性质》教学设计
《比的基本性质》教学设计
一、教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。
二、教学目标:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。
3、培养学生的抽象概括能力,渗透转化的数学思想。
三、教学重点:
1、理解比的基本性质。
2、会灵活运用比的基本性质化简比。
四、教学难点:
正确应用比的基本性质化简比。
五、教学策略:
1、由原有的知识点转化成现有的知识。
2、让学生多种思路化简比。
六、教学资源(教具):多媒体教学课件、投影机。
七、课型:新授课
八、教学过程:
1、复习引入
还记得除法中有什么性质吗?分数中又有什么性质呢?
内容分别是什么?它们有什么共同点?
2、讲授新课
(1)求比值:6∶8 12∶16 3∶4
展示学生完成的过程,同桌互改。
(2)比的基本性质。
通过刚才的练习,因为比值相等,我们有了这样一个结论:
6∶8 = 12∶16 = 3∶4
下面先请大家观察这两个比,发现了什么?
6∶8 =()∶()= 12∶16
让学生尝试说说自己的发现:比的前项和后项同时×2,比值不变。
再请大家观察另外两个比,又发现了什么?
6∶8 =()∶()= 3∶4
学生很快说出自己的发现:比的前项和后项同时÷2,比值不变。
由此得到:(板书课题及性质)
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
教师强调:“同时”“相同”“0除外”几个关键词。
(3)化简比。
比的基本性质作用:可以把比化成最简单的整数比。
以2∶3为例,说明什么是最简单的整数比
即时判断:下面哪些比是最简比?
6∶9 2∶9 4∶2.2 7∶13
教学例1.把下面各比化成最简单的整数比。
(1)15∶10=(15÷5)∶(10÷5)=3∶2
180∶120=(180÷60)∶(120÷60)=3∶2
讨论:化简整数比的方法是什么?
(2)1/6∶2/9=(1/6×18)∶(2/9×18)=3∶4
小组讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
(3)0.75∶2=(0.75×100)∶(2×100)=75∶200=3∶8
0.75∶2=(0.75×4)∶(2×4)=3∶8(更好)
小组讨论:怎样把小数比化成最简单的整数比?
小结化简比的方法:
(1)都化成整数比。
(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止。
3、区别化简比和求比值
讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数。
例如:25∶100化简比的结果是1∶4,读作1比4,求比值的结果是,读作四分之一。
4、巩固练习
(1)化简比
6∶10 0.3∶0.4
12∶21 0.25∶1
(2)选择
1千米∶20千米=()
(1)1∶20(2)1000∶20(3)5∶1
做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()
(1)20∶21(2)21∶20(3)7∶10
(3)思考题
六一班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()。
5、课堂小结
通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?
第三篇:比的基本性质教学设计
比的基本性质
教材分析
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。教学内容
义务教育课程标准实验教科书数学(人教版)小学《数学(第十一册)》第49—51页例1,及相应的“做一做”。
教学目标:
(1)理解和掌握比的基本性质.
(2)正确应用比的基本性质化简比.
(3)培养学生的抽象概括能力,渗透转化的数学思想。
教学重点与难点
(1)教学重点:应用比的基本性质化简比。(2)教学难点:比值和最简比的区别。
教学准备: 教学过程:
一、创设情境,导入新课
(一)、复习,铺垫 1、4÷5=8÷()=()÷15=20÷()问:根据什么填的?什么是商不变的性质?老师再加一个等号,同学们再任想一组。
2、= = = 问:老师把上面的除法改成分数形式,(板书)根据什么填的?什么是分数的基本性质?
3.复习比与除法、分数有什么联系?
比的前项、后项、及比号等。(设计意图:从复习商不变的性质及分数的基本性质入手,为学生类推出比的基本性质打下铺垫,渗透转化的数学思想,使学生感受事物间存在着紧密的内在联系。)
二、探究新知
1、导入谈话,大胆猜想。
我们把复习1中的除法算式写成比的形式,板书 4:5 8:10 12:15 20:25 这几个比可不可以用等号连接?
2、尝试验证。(讨论)那这个结论到底对不对呢?咱们再验证一下,我们算一下这几个比的比值。怎样计算比值?学生回答,学生计算,这些比的比值都是0.8。那这些比应该是相等的关系。(板书加上等号)事实证明我们刚才的猜想是正确的。这些比的前项和后项不同,比值却相等。同学们比较一下这些比的前项和后项看看你又能发现什么规律吗?
讨论交流 :学生观察,小组交流,全班汇报
3、初步归纳。
哪位同学能把我们发现的规律用简练的话概括一下。学生概括,教师板书。
4、完善归纳,概括出比的基本性质。
我们刚才归纳的这个规律中“相同的数”是不是任何数都可以呢? 学生发表自己的见解并说明理由,教师完善板书。(0除外)
比与除法,分数间有着极其密切的联系。除法,有商不变的性质,分数有分数的基本性质,对于比,我们把我们总结的规律叫做什么?(比可能存在比的基本性质)
板书课题:比的基本性质 全班齐读 比的前项和后项同时乘或除以相同的数,(0除外)比值不变。
(设计意图:此教学环节中,应顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,使之在“大胆猜想——小心验证——得出结论”的这一过程中,最后确切地得出了“比的基本性质”。)
5、学习化简比
明确:我们知道了比的基本性质,可以运用比的基本性质把比化成最简单的整数比。
(1)讨论。你们是怎样理解“最简单的整数比”这个概念的。最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项的公因数只有1。也就是前后项是互质数。举例说明(再次强调)(2)教学例题,尝试化简。整数比
18:12 我们先来看18:12这个比。对照最简整数比的含义,他只满足了前后项是整数的要求。怎样让它们的公因数只有1呢?同学们想想怎么办?学生在练习本计算,老师板书18:12 =(18÷6):(12 ÷6)=3:2 提问:为什么除以6?
学生讨论回答 教师讲解方法: 整数比化简的方法:把比的前项和后项同时除以它们的最大公因数;使比的前后项是互质数。巩固练习
分数比
这个比的前后项都不是整数,怎样变成整数?学生交流讨论回答
教师讲解方法:把比的前、后项分别乘以前后项分母的最小公倍数,使它变成整数比,然后再按化简整数比的方法进行化简 巩固练习
小数比
1.8:0.09 这个比的前后项都不是整数,怎样变成整数?学生交流讨论回答
教师讲解方法:把比的前、后项分别乘以或除以相同的数,使它变成整数比,然后再按化简整数比的方法进行化简 巩固练习
混合比 0.75:2 这个比的前项是小数,后项是整数,怎样化成最简整数比?学生交流讨论回答 教师讲解方法:把比的前、后项分别乘以或除以相同的数,使它变成整数比,然后再按化简整数比的方法进行化简 巩固练习小数:分数
教师讲解方法:先统一,都变分数或小数,再把比的前、后项分别乘以或除以相同的数,使它变成整数比,最后再按化简整数比的方法进行化简
总结方法:(设计意图:“最简单的整数比”是本节课教学的难点。这里摒弃了由典型的个例入手解释“最简单整数比”的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式的重要铺垫。)
三、巩固反馈,积累提升。
1、判断。
(1)比的前项和后项同时乘或除以相同的数,比值不变。()(2)把2:0.25化成最简整数比后是8。
(3)把1时:45分钟化成最简整数比后是1:45.(4)比的前项和后项都是整数的比,叫做最简单的整数比。()(5)2∶0.5化成最简单的整数比是4∶1。()
2、填一填。(1)48∶40=(48÷8)∶(40÷)=()∶()(2)把0.25:0.125 化成最简整数比是(),这个比的比值是()。
(3)把4:5的前项乘3,后项也应();前项除以2,后项也应();前项加上12,后项应()。
(设计意图:通过步步深入的学习交流活动,学生对比的基本性质探究更深入,理解更完善。最后的拓展性练习,使学生思维发散,联系实际,运用规律,激发学生不断探索新知的欲望。
四、课堂小结。
师:通过今天的学习,你学习了哪些知识?什么是比的基本性质?应用比的基本性质可以做什么?如何把整数比、分数比、小数比化成最简单的整数比?
(设计意图:知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解先猜想再验证,然后得出结论的数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。)
教学评价:
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。
俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。
第四篇:比的基本性质教学设计
《比的基本性质》教学设计
【教学内容】义务教育教科书六年级上册第50-51页。【教学目标】
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。【教学难点】理解并掌握比的基本性质。【教具学具】课件。教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?。比
前项
:(比号)后项
比值 除法
被除数 ÷(除号)除数 商 分数
分子 -(分数线)分母 分数值
二、探究新知。探究一:比的基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看:(1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)(2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5 探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。
出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120 cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:(18):(18)3:2 69690.75:2(0.75100):(2100)75:2003:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。32:16 48:40 0.15:0.3 5173: : 66128【设计意图:强化训练】
四、总结评价
这节课你有什么收获?还有什么疑问?
第五篇:比的基本性质教学设计
《比的基本性质》教学设计
一、教材分析
《比的基本性质》是小学数学人教版第十一册第三单元第二课时的内容。它是在学生理解掌握了比的意义,比和除法、分数的关系的基础上组织教学的。这一内容是知识构建的桥梁,既联系旧知又拓展新知,通过这一内容的学习,进一步丰富比在生活中的应用,同时为六年级下册内容比例知识学习奠定了基础,所以本节内容具有以旧引新和承上启下的作用。
二、学情分析
学生习惯于老师讲他们听,分析能力差,不善于动脑,说理能力、观察和概括能力差,自信心和表现欲也不够。
三、教学目标
1、在感知比的基本性质的基础上,运用已有知识、经验帮助学生理解、建构比的基本性质;知道“最简单的整数比”,会根据比的基本性质化简比。
2、培养学生自主迁移、自主构建知识的能力。
3、比较求比值和化简比的区别与联系,建立事物间相互联系的观念。
四、教学重点和难点
重点:理解比的基本性质和化简比。
难点:正确应用比的基本性质化简比。求比值和化简比的区别和联系。
五、教学过程:(一)复习回顾,引入新知。1、6÷8=12÷()=()÷24=3÷()根据什么填的?说出商不变的性质。(课件出示)
84()122、=()
= 20
=()
根据什么填的?说出分数的基本性质。
3、说说比跟分数、除法的关系。
师:比和分数、除法的关系这样密切,那么在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的?(生答)同学们说的对不对呢?通过进一步的学习,老师相信同学们一定会找到答案。
(二)启发诱导,探索规律。
1、出示一组照片,找出哪些与第一组形状相同。(生答)师:你是怎样找出来的?能不能找一个合理的方法来判断一下。(生答)启发学生通过求比值做出正确判断。
2、表示出三个比之间的关系。3:4=6:8=9:12
3、从左往右观察,你能发现什么规律?从右向左观察,你又能发现什么规律?(小组讨论)
4、班内交流,评议补充。
5、点明:刚才同学们的这个发现就是比的基本性质。课件出示齐读体会。问:为什么零除外。
6、判断猜想,激励评价。
7、分析比的基本性质,找出重点词。
8、巩固小练习。
(三)应用性质,化简比。
1、发现了比的基本性质,想想有什么用途?(生答)
2、课件出示理解最简整数比。
3、课件出示例题讨论化简方法。
4、学生汇报,尝试做。
5、展示,总结化简方法。(师点明整数比)
6、出示 : 0.75:2
7、小组讨论化简方法。
8、优生板演,评议。
小结分数比和小数比的化简方法。
(四)综合练习(课件出示,处理方式采用口答、独立做、小组讨论、优生讲解等形式)
(五)说收获,全课总结。
1629