2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版

时间:2019-05-13 01:29:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版》。

第一篇:2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版

1.6 有理数的乘方

第1课时 乘方(1)教学目标

【知识与技能】

理解有理数乘方的概念,掌握有理数乘方的运算.【过程与方法】

培养学生的观察、比较、分析、归纳、概括能力以及探索精神.【情感、态度与价值观】

通过在现实背景中理解有理数乘方的意义,体会数学的应用价值.教学重难点

【重点】有理数乘方的运算.【难点】有理数乘方运算的符号法则.教学过程

一、复习导入

1.师:同学们,请列式表示:(1)边长为a的正方形面积;(2)棱长为a的长方体体积.232.师:在小学我们已经学过a·a,记作a,读作a的平方(或a的二次方);a·a·a记作a,读作a的立方(或a的三次方).那么a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?(n为正整数)呢?

二、讲授新课

1.概念.n师生:一般地,我们有:n个相同的因数a相乘,即,记作a.34例如,2×2×2=2;(-2)(-2)(-2)(-2)=(-2).这种求几个相同因数的积的运算,叫做乘方(involution),乘方的结界叫做幂(power).nnn在a中,a叫做底数,n叫做指数,a读作a的n次方,a看作是a的n次方的结果时,也可读作a的n次幂.例如,2中,底数是2,指数是3,2读作2的3次方,或2的3次幂.一个数可以看作这个数本身的一次方,例如8就是8,通常指数为1的省略不写.2.例题.34【例】 计算:(1)(-2);(2)(-2);5(3)(-2).【答案】(1)原式=(-2)×(-2)×(-2)=-8.(2)原式=(-2)×(-2)×(-2)×(-2)=16.(3)原式=(-2)×(-2)×(-2)×(-2)×(-2)=-32.3.总结.让学生总结出符号法则.根据有理数乘法运算法则,我们有:

33正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.你能把上述的结论用数学符号语言表示吗? n当a>0时,a>0(n是正整数);当a<0时, n当a=0时,a=0(n是正整数)(以上为有理数乘方运算的符号法则).a=(-a)(n是正整数);a=-(-a)(n是正整数);a≥0(a是有理数,n是正整数).4.试一试.66(-2)读作什么?其中底数是什么?指数是什么?(-2)是正数还是负数? 32534=();(-)=();(-1)=();(-0.1)=().【答案】 略

三、课堂小结

教师引导学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.第2课时 乘方(2)教学目标

【知识与技能】

1.进一步掌握有理数的运算法则和运算律.2.使学生能够熟练地按有理数的运算顺序进行混合运算.【过程与方法】

通过例题,培养学生的观察、归纳、推理运算等能力.【情感、态度与价值观】

通过师生共同交流,渗透利用数学知识解决实际问题的思想,以激发学生学习的兴趣,树立独立解决问题的信心.教学重难点

【重点】有理数的混合运算.【难点】准确地掌握有理数的运算顺序和运算中的符号问题.教学过程

一、复习引入

师:在上新课之前,我们先来做几个题目巩固一下前面所学的知识.1.指名学生计算:(1)(-2)+(-3);(2)7×(-12);

3(3)17-(-32);(4)(-2);321(5)-2;(6)0;24(7)(-4)(8)(-2);(9)-100-27;(10)1×(-2);(11)-7+3-6;(12)(-3)×(-8)×25.2.师:说一说我们学过的有理数的运算律.加法交换律:a+b=b+a.加法结合律:(a+b)+c=a+(b+c).乘法交换律:ab=ba.乘法结合律:(ab)c=a(bc).乘法分配律:a(b+c)=ab+ac.2n2n

2n-

12n-1

2n

二、讲授新课

1.师:同学们,请观察下面的算式里有哪几种运算? 23+50÷2×(-)-1.在这个算式里,含有有理数的加、减、乘、除、乘方等多种运算,这种运算称为有理数的混合运算.2.有理数混合运算的运算顺序.(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.②可以应用运算律,适当改变运算顺序,使运算简便.3.试一试.师:指出下列各题的运算顺序:(1)-50÷2×();(2)6÷(3×2);(3)6÷3×2;

(4)17-8÷(-2)+4×(-3);22(5)3-50÷2×()-1.三、例题讲解

【例1】 计算:(-)÷1÷.【答案】 原式=(-)÷1÷=(-)××10=-.师:这里要注意三点:(1)小括号里的先算;(2)进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;(3)同级运算,按从左往右的顺序进行,这一点十分重要.【例2】 计算: 2(1)-10+8÷(-2)-(-4)×(-3);23(2)(-)×(-)+(-)÷[(-)-].2【答案】(1)-10+8÷(-2)-(-4)×(-3)=-10+8÷4-4×3=-10+2-12=-20.23(2)(-)×(-)+(-)÷[(-)-] =(-)×+(-)÷[(-)-] =(-)×+(-)÷(-)=-5+1=-4.5.课堂练习:(1)想一想: ①2÷(-2)与2÷-2有什么不同? ②2÷(2×3)与2÷2×3有什么不同?(2)试一试: 计算:2×(-)÷(-2).【答案】(1)①运算顺序不同,前者结果是-;后者结果是2.②运算顺序不同,前者结果是;后者结果是3.(2).四、课堂小结 教师引导学生一起总结有理数混合运算的规律:1.先乘方,再乘除,最后加减.2.同级运算按从左到右的顺序运算.3.若有括号,先小再中最后大,依次计算.第3课时 科学记数法

教学目标

【知识与技能】

1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算.2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.【过程与方法】

通过科学记数法的学习,让学生从各种角度感受大数,促使学生重视大数的现实意义,培养学生的情感.【情感、态度与价值观】

让学生充分感受到数学给我们的生活带来的便捷与严谨.教学重难点

【重点】正确运用科学记数法表示较大的数.【难点】正确掌握10的幂指数特征.教学过程

一、复习导入

师:我们先来看这几个问题.333n1.指名回答什么叫乘方,并让学生说出10,-10,(-10),a等的底数、指数、幂.2.师:请把下列各式写成幂的形式: ×××;(-)(-)(-)(-);-×××;.123456103.计算:10,10,10,10,10,10,10.师引导学生得出:由第3题计算:10=100 000,10=1 000 000,10=10 000 000 000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易写错,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿、一百亿等.又如像太阳的半径大约是696 000千米,光速大约是300 000 000米/秒,中国人口大约是13亿等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法.二、讲授新课

n1.10的特征.123410师:同学们,请观察第3题:10=10,10=100,10=1 000,10=10 000,„,10=10 000 000 000.n提问:10中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系? nn(1)10=1,n恰巧是1后面0的个数;(2)10=,比运算结果的位数少1.反之,1后面有多少个

70,10的幂指数就是多少,如1=10.2.练习.(1)把下面各数写成10的幂的形式:1 000,100 000 000,100 000 000 000.3512100(2)指出下列各数是几位数:10,10,10,10.3.科学记数法.(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式.233如:100=1×100=1×10;6 000=6×1 000=6×10;7 500=7.5×1 000=7.5×10.56

10第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1 000,变成10的n次幂的形式就行了.(2)科学记数法的定义.n根据上面的例子,我们把大于10的数记成a×10的形式,其中a的整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.n一般地,把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数(即1≤a<10),n是正整数,这种记数法叫做科学记数法.三、例题讲解

【例1】 用科学记数法表示下列各数:(1)696 000;

(2)1 000 000;(3)58 000;(4)-7 800 000.5【答案】(1)原式=6.96×10;6(2)原式=10;4(3)原式=5.8×10;6(4)原式=-7.8×10.【例2】 资料表明,被称为“地球之肺”的森林正以每年约1300万公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是多少公顷?

7【答案】 1300万=13 000 000=1.3×10.72因此,每年森林的消失量用科学记数法表示应是1.3×10hm.思考.用科学记数法表示一个数时,10的指数与原数的数位位数有什么关系?和同学讨论一下,再举几个数验证你的猜想是否正确.课堂练习

课本P43练习的第1、2题.【答案】 略

四、课堂小结

指导学生看书并掌握: 1.什么是科学记数法以及为什么学习科学记数法.2.突出科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.

第二篇:沪科版七年级上册数学教学设计

第2课时 正数和负数(2)教学目标:

1.理解有理数的意义.2.会根据要求把给出的有理数分类.3.了解“0”在有理数分类中的作用.4.培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点.教学重点和难点:

重点:了解有理数包括哪些数.难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.教学过程:

一、复习引入

1.填空:

①正常水位为0m,水位高于正常水位0.2m 记作

,低于正常水位0.3m记作。

②乒乓球比标准重量重0.039g记作,比标准重量轻0.019g记作,标准重量记作。

2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作 ;如果―7m表示物体向西运动7m,那么6m表明物体怎样运动?

二、讲授新课

1.数的扩充:

数1,2,3,4,„叫做正整数;―1,―2,―3,―4,„叫做负整数;正整数、负整数和零统称为整数;数,8,+5.6,„叫做正分数;―,―,―3.5,„叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数.2.思考并回答下列问题:

①“0”是整数吗?是正数吗?是有理数吗? ②“―2”是整数吗?是正数吗?是有理数吗? ③自然数就是整数吗?是正数吗?是有理数吗? 要求学生区分“正”与“整”;小数可化为分数.3.有理数的分类

不同的分类标准可以将有理数进行不同的分类:

① 先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:

正整数整数0负整数有理数分数正分数负分数

2314457967②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表: 有理数 正有理数正整数正分数0负有理数负整数负分数

注:①“0”也是自然数。②“0”的特殊性.③非负数:0或正数;非负整数:0或正整数;非正数:0或负数;非正整数:0或负整数;非负有理数:0或正有理数;非正有理数:0或负有理数.4.数集:把一些数放在一起所形成的集合,叫做数的集合,简称数集。它的符号标志为{ „}.所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集.三、例题讲解

课本P6页

评析:掌握正负数的概念是解决本题的关键.四、巩固练习

把下列各数填入相应集合的括号内:

29,―5.5,2002,―1,90%,3.14,0,―2,―0.01,―2,1(1)整数集合:{29,2002,―1,0,―2,1 „}(2)分数集合:{ ―5.5,90%,3.14,―2,―0.01,„}(3)正数集合:{29,2002,90%,3.14,1,„}(4)负数集合:{―5.5,―1,―2,―0.01,―2,„}(5)正整数集合:{29,2002,1,„}(6)负整数集合:{―1,―2,„}(7)正分数集合:{,90%,3.14,„}(8)负分数集合:{―5.5,―2,―0.01,„}(9)正有理数集合:{29,2002,90%,3.14,1,„}(10)负有理数集合:{―5.5,―1,―2,―0.01,―2,„} 注:要正确判断一个数属于哪一类,首先要弄清分类的标准。要特别注意“0”不是正数,但是整数。在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.五、课堂小结

本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题? 让学生小结有理数的定义和两种分类方法.***36713671

3六、布置作业

P7页第7题

第三篇:2015秋七年级数学上册 4.4 角教学设计 (新版)沪科版

4.4 角

第1课时 角的表示和度量

教学目标

【知识与技能】

通过丰富的实例,进一步理解角的有关概念,认识角的表示,会读、写角、认识量角器,会用量角器测量角的度数.【过程与方法】

通过在图中及实例中找角,培养观察力,能把实际问题转化为数学问题,培养动手、动脑的习惯.【情感、态度与价值观】

积极参与数学学习活动,培养学生对数学的好奇数和求知欲.教学重难点

【重点】掌握角的表示方法,会用量角器测量角的度数.【难点】掌握角的表示方法.教学过程

一、创设情境,引入新课

师:(展示三角板、五角星)同学们,你们知道这是什么吗?

生:三角板、五角星.师:为什么这么叫呢? 生:因为三角板有三个角、五角星有五个角.师:在日常生活中,我们经常看到各种各样的角,谁能说说自己见过的角?

生:课本有四个角.衣领有尖尖的角,剪刀张开也有角,钟表指针形成角.射击运动员射击时也有角度的调整„„

师:生活中处处都能见到角,角与我们的生活息息相关,今天我们就走进角的世界,一起来研究角.板书:角的表示与度量 活动(一)角的认识

师:角是一个几何图形,请大家说说角是由什么图形构成的? 学生看书回答.师:如果我们把角看成是由一条射线绕它的端点旋转而成的图形,那么始边与终边又是指什么? 学生看图回答.师:角的定义有静态和动态的两种.运动的观点定义的角,始边旋转经过的部分是角的内部,未经过的部分是角的外部.师:知道什么是平角、周角、直角吗? 学生看书回答.师:1.构成角的要素是顶点、两条边.2.每个角都有两条边,这两条边都是射线.3.角的两边有公共端点.活动(二)角的表示方法 师:我们怎样表示角呢?请同学们看课本上说了几种表示方法? 学生看书后回答.师:角通常用符号“∠”表示,我们给它取一个最简洁的名字,标出∠1,除了这种记读方法外,还可以把角的一条边标为“A”,顶点标“B”,另一条边标为“C”这个角就记作:∠ABC或∠B,读作:角ABC或角B.也可以用希腊字母表示.师:1.用三个大写字母可以表示一个角,三个字母的顺序有规定,顶点的字母必须写在中间,顶点的字母不一定用O,角的两边的字母也随意,当顶点只有一个角时,也可以用顶点的字母表示.2.用数字或小写的希腊字母表示角时,不能角中有角.二、新课讲授

1.下列说法中,正确的是()A.平角是一条直线 B.周角是一条射线

C.两条射线组成的图形是角

D.一条射线绕它的端点旋转而成的图形叫做角

2.如图,图中共有多少个角?请用适当的方法表示这些角.(不包括平角)

学生观察,上黑板表示.师:(1)可标上字母,用字母表示;(2)也可标上数字、希腊字母表示.活动(三)角的度量.师:角用什么来度量呢?角的单位是什么? 生:量角器,度.师:(出示量角器)知道怎样用量角器量角的度数吗?请大家看操作(演示).师:看懂了吗?把量角器放在角的上面,怎样量?分几步进行?

生:(1)量角器的中心和角的顶点重合;(2)零度刻字线和角的一条边重合;(3)角的另一条边所对的量角器上的刻度就是这个角的度数.师:我们把量角的方法归纳为“两重合,一看”.(教师演示)量角的过程中注意:如果角的一条边和外圈零刻度线重合,就看外圈刻度.如果角的一条边和内圈零刻度线重合,就看内圈刻度.现在谁看出了我们量的度数? 学生回答.三、课堂小结

1.本节课主要学习了角的概念,角是由什么构成的图形? 2.如果从运动的观点来看,角又是怎样形成的? 3.你学会了怎样表示角吗? 4.你学会了怎样度量角吗?

第2课时 度量单位之间的换算

教学目标 【知识与技能】

1.知道角的度量单位,并能进行单位的转换.2.会把角的认识与现实生活相联系,用角的知识解释生活中的一些现象.【过程与方法】

通过在图片、实例中找角,通过角的测量,培养观察力,能把实际问题转化为数学问题.【情感、态度与价值观】

能积极参与数学学习的活动,培养对数学的好奇心和求知欲.教学重难点

【重点】掌握角的度量单位以及单位之间的换算.【难点】角度的换算以及对方位角的理解.教学过程

一、创设情境,引入新课

师:对于一个已知的角如何去度量它的度数呢?上节课我们通过对量角器的使用,基本上掌握了如何去度量一个角的度数,同学们知道1°的角是怎样来的吗?请同学们作出1°的角,1°的角是最小的角吗? 学生画图体验,教师巡视指导.师:把一个平角180等分,也可以把一个周角360等分,我们把每一份记为1°的角,再把1°的角60等分,每一份为1分,记作1',进一步把1'的角60等分,每一份为1秒,记作1″,即1°=60',1'=60″或1'=()°,1″=()',1平角=180°,1周角=360°.师:时间单位是时、分、秒,角的单位是度、分、秒.二、新课讲授

1.计算:(1)145°等于多少分?等于多少秒?(2)1800″等于多少度?等于多少分? 学生独立解答.师:从大的单位转化为小的单位用乘法.反过来,用除法.2.计算:(1)用度、分、秒表示30.26°;(2)42°18'15″等于多少度? 学生计算解答,教师找两学生上黑板解答.师评:要与时间的计量单位进行类比,弄清正向互化和逆向互化两个方向的问题.3.计算:(1)23°18'45″+82°47'32″;(2)13°26'41″×6;(3)83°18'45″-53°38'55″;(4)360°÷25.学生看课本例题,解答得到:(1)106°6'17″(2)80°40'6″(3)29°39'50″(4)14°24'.师:角度的运算方法:①求两角和时,将同等单位的数相加,再按60进制将小单位转换成大单位;②求两角差时,如果小单位不够减,应向上级单位借,借1'就是60″,借1°就是60',然后再把同单位相减;③角度的倍、分运算,乘法运算是将度、分、秒与倍数分别相乘,再把小单位转换成大单位;除法运算是把大单位转换成小单位,再将度、分、秒分别转化成直接被除数整除的形式,如果不能除尽,再四舍五入.4.把一个周角17等分,每份是多少?(精确到1')【答案】 360°÷17=21°+3°÷17 =21°+180'÷17≈21°11'.师:同学们知道方位角吗?你知道什么是东北方向吗? 学生回答.师:方位角就是用角度和方向表示位置的角,如果位置在东、南、西、北方向上时,表示为正东、正南、正西、正北.如果位置在其他方向时,则表示为南(北)偏东(西)多少度.一般的方位角都是以南北为基准线,由我们对目标物的视线与基准线的夹角确定它的位置与方向.另外,如果在北(南)偏东(西)45°,也可相应地表示为东北.(多媒体展示)

三、变式训练

按要求在图上画出: 1.南偏西60°.2.北偏东30°.3.用射线表示西北方向.师:(展示时钟)时钟上的角是指时针与分针所夹的角,钟面上共有12个大格,把周角的12等分,每个大格对应30°的角,有60个小格,每个小格对应6°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°.时针与分针的夹角一般是指小于180°的角.变式训练:在5点整时,时针与分针所成的夹角是多少度? 学生思考并回答.师评:以12点为基准,5点整时,时针转过了30°×5=150°,分针转过了0°,其度数差为150°-0°=150°,即时针与分针所成的夹角是150°.四、课堂小结

本节课我们学习了哪些内容?你有什么收获? 1.角的单位与度量.2.角的加减乘除运算.3.方位角和时钟上的角.

第四篇:七年级数学上册 1.5《有理数的乘方》教案 (新版)新人教版

有理数的乘方

教学目标

知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;

解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.

教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.教学难点:有理数乘方的意义的理解与运用

教学过程设计

活动一.创设情境,引入新课.1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.活动二.合作交流,得出结论.1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果.2.定义:n个相同因数a相乘,即a·a·…·a(个),记作a,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?

①(-2.3)×(-2.3)×(-2.3)×(-2.3).②(-nn1111)×(-)×(-)×(-).4444

③x·x·x·......·x(2010个x的积).(2)课本例题,教师指导学生阅读分析例题,并规范书写解题过程.3.此例可由学生口述,教师板述完成.44.小组讨论: 2与2的区别?

教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-

42)×(-2)×(-2)记作(-2).通过补充例题和小组讨论:2与2的区别的学习,对有理44

数的乘方有更进一步的理解.活动三.应用新知,课堂练习.1.做一做:课本第42页练习第1题.2.用计算器算,以及课本42页练习第2题.3.小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律.活动四.知识梳理,课堂小结.1.由学生小结本堂课所学的内容.2.总结五种已学的运算及其结果.活动五.知识反馈,作业布置.1.课本47页第1,2题.2.课外拓展

(1)用乘方的意义计算下列各式:

222①(2);②2;③;④.33443

(2)观察下列各等式:1=1; 1+3=2 ; 1+3+5=3;1+3+5+7=4……

①通过上述观察,你能猜想出反映这种规律的一般结论吗?

②你能运用上述规律求1+3+5+7+...+2011的值吗? 2222

第五篇:人教版七年级上册《有理数乘方》说课稿

【小编寄语】查字典数学网小编给大家整理了人教版七年级上册《有理数乘方》说课稿,希望能给大家带来帮助!

有理数乘方说课稿

各位领导、各位老师:

上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。

今天我说课的内容是人教版七年级数学上册有理数乘方第一课时的内容。根据新课程标准提出的让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展的理念。我在设计中力求自主探索、动手实践、合作交流成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

一、教材分析

1、教材的地位与作用:

有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

2、教学目标:

根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:

⑴、知识与技能:

让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

⑵、过程与方法:

在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

⑶、情感、态度和价值观:

让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

3、教学重点与难点:

有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

二、教法学法

1、学情分析:

在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

2、教学策略:

根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

三、教学过程

1、设置游戏,引入新课:

首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式:;

游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:22222;

最后引导学生思考这两个算式的特点,引入新课。

这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

2、合作交流,探索新知:

先让学生分组讨论下面算式特点:①,②22222,③(-3)(-3)(-3)(-3),④(-0.3)(-0.3)(-0.3)

接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:aa=a ,aaa=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:aaa的结果,总结出幂、底数与指数的概念。

n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

3、迁移训练,总结规律:

在这个环节中,我首先要求学生把算式①﹙-4﹚﹙-4﹚﹙-4﹚,②﹙-2﹚﹙-2﹚﹙-2﹚﹙-2﹚,③﹙-﹚﹙-﹚﹙-﹚,④﹙-﹚﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

4、应用新知,尝试练习:

本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙ ﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

5、归纳小结,形成体系:

首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

四、设计说明

本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。

下载2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版word格式文档
下载2015秋七年级数学上册 1.6 有理数的乘方教学设计 (新版)沪科版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐