第一篇:华应龙教案找次品教案实录
华应龙教案找次品教案实录
一、谈话引入
1.实话实说——请吃糖
【为了活跃气氛,拉近与学生的感情,更主要地为了引入“次品”的概念,课前与学生这样谈话】
师:同学们仔细看看老师,能用几句简短的话描述一下老师的特点吗? 生1:老师中等身材,头发很平。
生2:老师脸很方,眼睛很小。„„
(老师用鼓励的目光激励学生发言,随便学生怎么说,说的越奇怪越好。不管学生说什么,老师都大肆表扬同时表示感谢,以激起其他学生想说话的欲望。待三四个学生发言后,老师话锋一转,提出第二个问题。)
师:同学们非常善于观察,这么短的时间就发现了老师这么多的特点。既然如此聪明,请允许我请教第二个问题,你们必须实话实说,说实话的本老师奖励吃糖。
(拿出一瓶真的木糖醇,此时学生都好奇地等着老师会出什么问题或者看着老师手里的木糖醇,老师故意矜持一会才说出问题。)
老师的问题是:你觉得我和你们原来的数学老师相比,谁更像一位优秀的数学老师?(听课老师有的发出了笑声,学生们也都面面相觑,微笑着不知如何作答)生1:老师您更优秀。
师:(笑着说)瞎说!你还没听过老师上课呢。生2:(笑着说)两个都像。
师:(笑着说)不许都选,只能选一个。生2:(有点无奈的)那就选我们原来的老师吧。
师:说得对!咱们今天表现的如此优秀,一定是原来老师的功劳。请吃糖!
(从木糖醇瓶中倒出一粒放入该学生手中,继续面向其他同学)谁还想吃糖,请实话数说。生3:是我们原来的老师,因为他辛辛苦苦教了我们好几年。
师:(紧紧握着该学生的手)真是一个懂得感恩的孩子,说得对,请吃糖!
(从木糖醇瓶中再倒出一粒放入该学生手中)【对学生而言,这是一个两难的问题。有说原老师的,有说现在的老师的,也会有两边讨好的。老师对两个都选的同学一定要逼其选其一,同时给选自己原来老师的两个学生每人一粒糖吃。】
师:(笑着说)同学们不用说了,老师已经知道结果了,应该是你们原来的老师更优秀。(话锋一转)当某个人或某项事物不足够好时,我们可以称之为——(拖长音,表示疑问)生:次品
师:对,次品。(随机板书)
师:(很认真地说)在今天在座的这么多优秀教师中找出我这样的次品老师是很容易的,可有些时候,找次品就不那么容易了。刚才谁吃我糖了,请给我站起来!(假装生气)【吃糖的学生刚才还美滋滋的呢,现在被迫站起来。】
师:(继续假装生气)谁让你们吃糖的?(学生苦笑)瞧瞧你们惹麻烦了吧。老师刚刚买了3瓶一样的木糖醇,其中一瓶就被你们“偷吃了”两粒,(老师出示3瓶一样的木糖醇),吃掉两粒的那一瓶重量自然就变得轻一些。重量变轻了我们就可以称之为——(拖长音,表示疑问。)
生:次品(很快接上)
师:对。怎样很快地知道哪一瓶是次品呢?(示意吃糖的学生坐下)如果用天平称来称,至少几次才能保证找到呢?请独立思考。(学生独立思考约30秒钟)2.初步建立基本思维模型。
师:谁来说说至少要几次才能保证找到?
(此时学生基本有两种意见:部分或大部分人认为需要2次,部分思维好的同学会认为1次足矣。老师请认为1次的同学上台展示)师:你见过天平吗? 生:见过。
师:天平长什么样子?(学生茫然。老师走过去示意学生把双手向左右两边伸平,笑曰:这就是一架美丽的天平。该生不自然地笑了,全体同学则会心地一笑。)
师:别人都认为要2次,你说1次就行了。别瞎说!怎么称的?称给我们瞧瞧!(该生演示:任意拿两瓶放在天平左右两边,两手伸平)生:如果是这种情况,剩下的那一瓶就是次品。师:如果天平左右两边不平呢?(该生再演示:天平左高右低的情况。)
生:如果是这种情况,左边高的那一瓶就是次品。师:还有一种情况呢?
(该生马上反应过来,立刻演示:天平左低右高的情况。)生:如果是这种情况,右边高的那一瓶就是次品。(面向全体同学)
师:大家看明白了吗?刚才这位同学任意从3瓶中拿出2瓶放在天平的左右两边,如果平衡了,次品在哪? 众生:剩下的那一瓶。师:如果天平有一边翘起呢? 众生:翘起的那一瓶。
师:不管是哪一种情况,几次就可以找到次品了呀? 众生:1次。
师:1次果然就可以找到次品是哪一瓶了,表扬给我们带来这样思考的那位同学。(掌声想起)
师:谁还能像刚才那位同学一样给我们演示一下怎么1次就能找到次品了呢?
【3瓶中有1瓶次品,用天平称来称,至少1次就可以找到。是找次品问题最基本的思维模型,一定要让每个学生都清晰。所以,一位同学演示后,再请一位同学上台演示,以加深每个同学的印象。】
(生再次演示,老师适时强调)
师:开始认为需要2次的同学,现在清楚了吗?3瓶当中有1瓶次品,用天平称称,至少几次就可以保证找到? 众生响亮回答:1次。3.拓展延伸,引导猜想。
师:3瓶当中有1瓶次品,用天平称称,至少1次就可以保证找到。如果不是3瓶,假如今天来听课的老师每人1瓶,大概有两千多瓶吧。我们暂且估计有2187瓶。(随机板书)如果2187瓶中也有1瓶次品(轻),用天平称称,至少几次才能保证找到呢?请你猜一猜!(停顿约20秒,找两三个同学回答)生1:2186次。生2:2185次。生3:一千多次。生4:729次。
师:2187瓶中有1瓶次品,用天平称称,怎么也要好两千多次、一千多次或好几百次,都是这么认为吗? 众生点头:是。
师:如果你们都是这么认为,今天这节课就非常有研究的必要。我们今天这节课就来研究,如果真有2187瓶木糖醇,其中1瓶是次品(轻),用天平称称,究竟至少几次才能保证找到,好吗? 众生:好!
二、组织探究 1.体会化繁为简
师:要解决这个问题,大家觉得2187这个数据是不是有点大呀? 众生:是。
师:解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略,谁知道是什么? 生1:简化 生2:化简
师:对!解决问题时,面对一些比较庞大的数据,我们往往可以采取一种策略——化繁为简(随机板书),也就是把数据转化地小一些,就是两位同学说的化简。简到什么程度呢?3瓶刚才我们研究过了,现在我们研究几瓶好呢? 生1:4瓶。生2:5瓶。
师:5瓶和我们书上的例1刚好一模一样,我们就先来研究如果5瓶当中有1瓶次品,用天平称称,至少几次保证找到?好吗? 众生:好!2.第一次探究
师:请先独立思考。可以拿出5枚硬币动手试一试。(约1分钟后)
师:同桌同学可以小声交流交流。(约1分钟后)
师:谁来说一说至少几次保证能找到? 生1:1次。生2:2次。生3:3次。„ „
师:你是怎么称的?请描述称的过程?
生1:我在天平左右两边各放1瓶,如果有翘起,就找到了。
师:这种情况是有可能的,但能保证吗?如果天平平衡了怎么办?你先请坐!(生1意识到自己考虑问题的不足,带着思考坐下!)
生2:我也在天平左右两边各放1瓶,如果平衡了,说明这两瓶中没有次品;就从剩下的3瓶中再任意选两瓶放在天平的左右两边,如果平衡了,剩下的那瓶就是次品,如果有一边翘起,翘起的那端就是次品。一共称了2次。师:他的方法可行吗? 众生:可行。师:刚才这位同学的称法,开始时,把5瓶分成了怎样的3份呀? 生:(1、1、3)
师:真聪明!1和1要称一次,剩下的3瓶中再找1瓶次品,就像我们课刚刚开始的问题一样,当然也要1次,一共就是2次。这种称法如果用数学符号简单地记录下来,可以写成这样,用“ ”表示称一次(板书): 5→(1、1、3)→(1、1、1)〒 2次 可以吗? 众生:可以。
师:有没有也是2次,但称法不一样的?
生:我在天平左右两边各放2瓶,如果平衡了,说明这两瓶中没有次品,剩下的那瓶就是次品,但这不能保证。如果有一边翘起,说明次品在翘起的那一端里,然后再把翘起那一端的2个放在天平左右两边,再称一次,一定可以找到。一共称了2次。
师:真了不起!同样也是称2次,称法还真的不同。这位同学的称法如果也用数学符号简单地记录下来,可以写成这样:(板书)5→(2、2、1)→(1、1、)〒 2次 行吗? 众生:行!
师:比较两位同学的称法,过程不同,但结果一致!除了结果相同外,还有没有发现别的共同点?
(学生略作思考,老师随机点出)
师:老师发现刚才的两种称法,不管开始时如何分组,在每一次称的时候,天平左右两边始终保持瓶数一样,这是为什么呀?为什么不天平一边放2瓶,一边放3瓶呢? 生:瓶数不一样,比较不出来。
师:由于正品和次品的差距往往很小,所以当瓶数不等时,用天平称量时是无法判断的。找次品自然要追求次数越少越好,所以这种“浪费”的称法我们当然不提倡。
师:(笑着对说要3次的同学说话)3次当然能称的出来,但并不是至少的方案,明白了吗? 生点头示意明白。3.第二次探究
师:5瓶我们研究过了,离2187瓶还差的远呢。再靠近点,接下来我们研究多少瓶呢? 生1:8瓶。生2:9瓶。生3:10瓶。
师:同学们说的都可以,但我们上课时间有限,在一位数中9最大,我们来研究9瓶好不好?(其实例2就是9瓶)众生:好!
师:谁再来明确一下问题?
生:9瓶木糖醇中有1瓶是次品(轻),用天平称称,至少几次保证找到?
师:问题已经很明确,请先独立思考。可以拿9枚硬币分组试一试,也可以像老师一样用数学符号画一画。
(师静静地巡视约1分钟)
师:请前后桌4位同学一组,讨论交流你们认为至少几次才能找到次品?(师参与讨论约2分钟)
师:老师刚才在下面听到有的同学说要4次,有的说要3次,还有的说2次就行。到底至少要几次呢?看来需要交流交流。先从多的来,谁刚才说要4次的?请说说你是怎样称的? 生:我天平左右两边各放1个,每次称2个,这样4次就一定可以找到。(师随着学生的表述相机板书)
9→(1、1、1、1、1、1、1、1、1)〒 4次 师:他的称法可行吗? 生:可行但不是次数最少的。
师:好!让我们一起来听听次数再少一些的称法。3次该怎样称?
生:我把9分成4、4、1三组,先称两个4,如果天平平衡了,剩下的1瓶就是次品,但这是很幸运的。如果不平,把翘起的那4瓶再2个对2个称,如果平„„(老师礼貌地打断学生的话)
师:这时会出现平衡吗?(提醒:次品就在这4瓶里,天平左右两边各放2瓶)
生:(明白后立刻改口)一定会有一边翘起,然后再把翘起的2瓶天平两边各放1个,再称1次,共3次就可以找到次品是哪一瓶。(师随着学生的表述相机板书)
9→(4、4、1)→(2、2)→(1、1)〒 3次 师:他的称法可行吗?
生:可行。我也是3次,但称法与他不一样。
师:真的吗?同样是3次,称法还可以不一样?赶快说给我们听听。
生:我把9分成2、2、2、2、1五组,先称两个2,如果有一边翘起,再称1次就可以了,但这是幸运的;如果天平平衡了,再称剩下的两个2,如果天平还是平衡了,剩下的1瓶就是次品,但这也是很幸运的。如果不平衡,再把翘起的2个分开,天平左右两边各1个,再称1次就一定找到次品了。这样也是3次保证找到了次品。(师随着学生的表述相机板书)9→(2、2、2、2、1)→(2、2、2、2、1)→(1、1)〒 3次 师:还真不错!同样是3次保证找到,称法还真不一样。师:刚才好像还有人说2次就够了,不太可能吧?是谁说的?(说2次的学生起立)
师:别人都是4次、3次的,你说2次就行,还坚持吗?(学生坚持)
师:好!我们大家刚才辛苦了老半天才弄明白至少要3次才能保证找到次品,他竟然坚持说2次就够了,难道我们„„请认真听听他是怎么称的!如果他说错了,我们要罚他唱首歌。(故意这样说,以引起学生都来关注他的2次是怎样称的)
生:我把9分成三组,每组3个。先称两个3,如果天平有一边翘起,次品就在翘起的那3瓶里;如果天平平衡了,次品就在剩下的3瓶里。不管怎样,接下来就只要研究3瓶就可以了。前面刚学过,从3瓶里找1瓶次品,称1次就够了。这样2次就保证找到了次品。(师随着学生的表述相机板书)9→(3、3、3)→(1、1、1)〒 2次 师:听得懂他的称法吗?
(有部分学生不敢大声回答,请刚才的学生再重复一遍)
师:现在都听懂了吧!这个同学的称法完全可行,称2次就解决了问题。为什么我们别的称法次数就比他多呢?我们的问题出在哪儿?这个同学的高明又在哪呢?请仔细观察黑板上的四种称法,看谁能最快发现其中的奥秘? 9→(1、1、1、1、1、1、1、1、1)〒 4次 9→(4、4、1)→(2、2)→(1、1)〒 3次
9→(2、2、2、2、1)→(2、2、2、2、1)→(1、1)〒 3次 9→(3、3、3)→(1、1、1)〒 2次(学生观察思考约1分钟,老师给予适当暗示)
生:2次的称法一开始把9瓶分成了3组,每组3个。这样称1次,就可以断定次品在哪一组里。
师:说得好!把9瓶分成了3组,每组3个,也就是把物品总数均分3份,这样称1次,就可以淘汰2份6瓶,从而让剩下的瓶数变得最少,自然总的次数就会少下来。而4次的称法,称1次后,最多只能淘汰2瓶;3次的两种称法,称第一次后,也最多只能淘汰4瓶,所以最终的次数就会相对多起来。4.第三次探究
师:刚才9瓶中找1瓶次品(轻),那位同学一开始把9瓶平均分成3份来称,最后的次数最少。是不是所有的可以均分成3份的物品总数,一开始都平均分成3份来称,最后的次数也是最少呢?刚才那位同学是否偶然呢?我们还需要怎么办? 生:继续验证。
师:(握着同学的手)说得好!仅仅一个例子不足以推广,我们还需要进一步验证。验证多少呢?比9大一些,可以均分3份的?(有学生立刻回答)生:12.师:好的!我们就来研究12。如果12瓶中有1瓶是次品(轻),用天平称称,至少几次保证找到?请先用刚才那位同学的思路,均分3份来操作。看看至少要几次? 生说师板书:
12→(4、4、4)→(2、2)→(1、1)〒 3次
师:按照刚才那位同学的思维模式推理,至少要3次才能保证找到。3次是否真的就是最少的次数吗?有没有比3次还少的呢?如果有,说明刚才的那位同学纯属偶然。请2人一小组,拼凑12枚硬币操作操作,或者用笔画一画,看看有没有更少的可能?(学生思考讨论,老师巡视参与,约1~2分钟后交流)生1:我是均分2份做的,也是3次。(师随着学生的表述相机板书)
12→(6、6)→(3、3)→(1、1)〒 3次 师:有没有比刚才的3次少? 生1:没有。
师:谁找到比3次还少的称法了?
生2:我没找到,但我一开始均分4分来做的,最后也是3次。(师随着学生的表述相机板书)
12→(3、3、3、3)→(3、3、3、3)→(1、1、1)〒 3次
师:两位同学真不错,再次给我们展示了最终结果一样时,中间过程的丰富多彩。但我们都没有找到比3次还少的方案。如果再研究下去,我们会发现次数只会越来越多。比如: 12→(2、2、2、2、2、2)→(2、2、2、2、2、2)→(2、2、2、2、2、2、)→(1、1)〒 4次。其实刚才那位同学的思维模式并非偶然,真的具有一定的规律性。时间关系,我们不再继续验证。
师:刚才那位同学的思维模式是什么?
众生:物品总数如果能均分3份,就把物品尽量平均分成3份来操作。师:为什么呢?
生:把物品总数平均分成3份来操作,这样称1次就可以断定次品在哪一份里,每一次都最大限度地淘汰,最后的次数自然就会少下来。
三、强化训练
师:通过刚才的探究,我们已经找到了内在的思维规律,现在老师想考验一下咱们班同学的数学感觉如何,看看谁的反应快?如果不是12瓶,而是27瓶中有1瓶次品(轻),用天平称称,至少几次保证找到?
(提醒运用刚才发现的思维模式,马上有学生举手)生:3次。
师:(故作惊讶!)别乱说,不可能吧?27瓶呀蛮多的,3次怎么可以保证找到? 生:我把27瓶平均分成3份,每份9瓶;称1次就可以推断次品在哪个9瓶里。然后9瓶就像刚才那位同学那样再均分3份来称,2次就够了。我这里只增加了1次,所以3次就找到了。
(师随着学生的表述相机板书)
27→(9、9、9)→(3、3、3)→(1、1、1)〒 3次
师:真聪明!把27瓶平均分成3份,每份的9瓶,也可以假设看成一个超大瓶。这样,27瓶就转化为了3个超大瓶,称1次,自然就可以断定次品在哪个超大瓶里,也就是哪个9里。然后把9再平均分成3份,以此类推,每称1次,都淘汰两份,剩下一份。最后的次数一定就是至少的。
师:如果不是27瓶,而是81瓶呢?
(有学生脱口说要9次,可能是想到了九九八十一)师:(不动声色)嗯!有可能。是至少吗?(马上有学生反应过来)生:4次就够了。
师:(微笑着)请问怎么称?
生:把81瓶平均分成3份,每份27瓶,称1次就可以知道次品在哪个超大大瓶27里。27瓶刚才是3次,所以81瓶中有1瓶次品,用天平称称,4次就够了。师:真了不起!他也学会转化了。如果不是81瓶,而是243瓶呢?(立刻有学生举手)
生:5次。跟上面一样,把243均分3份,只比81瓶多称了1次。所以是5次。师:反应真快!有没有哪位同学猜到老师接下来会出哪个数? 生:729。
师:(握着学生举的手表扬他)真是英雄所见略同!老师真的要出729,如果真有729瓶,其中1瓶是次品(轻),用天平称称,至少几次保证找到? 众生:6次。
师:接下来就到哪个数了? 众生:2187。
师:现在大声地告诉老师,如果真有2187瓶,其中1瓶是次品,用天平称称,至少几次保证找到? 众生:7次。
师:课刚开始时猜需要2186次的是那位同学,请问此时此刻有什么想说的吗?(该生起立,笑着无言以对)
师:是什么让这位同学无言以对?从两千多瓶中找一瓶次品,起初我们本能地感觉怎么也要两千多、一千多或好几百次,其实7次足矣。前后相差之大,远远超出了我们的想像。这就是数学思考的魅力。也正是这种无穷的魅力,才让我们这位同学感觉无言以对。其实不止是这位同学,刚开始时,我们都没有想到啊!(轻轻摸摸该生的头,示意他坐下)
四、全课总结 1.全课小结
师:(指着板书上的“次品”俩字)请问我们今天上的什么课? 全体学生:(自然地答道)次品课。师:(故作生气状)瞎说!你才上次品课呢。
(顺手在“次品”前写上一个大大的“找”字,全体听课老师则会心地哈哈大笑)2.提出问题
今天我们找次品的物品总数不管是9、12,还是27、81、243„„,都是3的倍数,也就是可以直接均分三份来操作,如果物品总数不是3的倍数,又该怎样操作呢?这个问题,需要我们下节课来继续研究。
第二篇:华应龙--找次品(推荐)
找次品
【课前慎思】
“找次品问题”是经典的数学智力问题,细分为许多类型,有的类型解决起来相当复杂。《找次品》一般安排在五年级下册,是选择了比较简单的一类作为例题,即“若干个外表完全相同的零件,已知其中一个是次品,次品比正品重一些(或者轻一些)。使用一架没有砝码的天平,至少几次就一定能找出这个次品?”这样的课不好上,常常是草草收兵。
一、存在问题是什么?
第一,目标太多。这节课综合了操作、观察、猜想、验证、归纳、推理等活动,再加上其内在规律的隐蔽性,一堂课下来,学生们一头雾水,教师也被绕得头昏脑涨。最惨的是一节课就想让学生体会优化策略、记录推理过程,懂得化归思想,进而形成统计表格、观察表格、发现规律。
第二,心太急。这节课可以讲的内容很多,小学生该学些什么?优化的策略,将待测物品分成三份去称,是最主要的吗?应该直奔这一主题而去吗?太直接,太功利,一定会缺失了情趣,少了沿途的风景。
第三,不甚明了。有的讲课老师对“找次品问题”的思想方法说不清道不明,只知道“分3份”,进一步的知道“尽可能平均分成3份”;有的老师知其然但不知其所以然。以其昏昏岂能使人昭昭?
二、这节课有难度,难度在哪?
难在理解题意?如果开始不出示“至少称几次就一定能找出次品来”,还难吗?“至少”和“最少”是有区别的,“至少”包含了“最少”,比“最少”多的也行。但在这类题目中,用“最少”行吗?是否不伤害这道题的价值?
难在图示表达?图示表达怕不是这一教学内容主要要去关照的,是否“随风潜入夜”就好?图示方法也是五花八门,什么样的图示比较好?是9(3,3,3)→(1,1,1),还是2015年启用的新版教材上的?
难在逻辑推理?学生要经历一系列严谨而缜密的推理过程,需要长时间去思考一个问题,这可能是学生未曾经历的。因为原来解决问题,一般只需要一步、两步,现在有七步、八步之多。“花开两朵,先表一枝”的分类讨论,也是学生初次邂逅。
三、需要推敲的是什么?
我思考操作的价值——
这节课需要学生动手操作吗?需要实物天平吗?需要模拟天平吗?新版教材上的活动有价值吗?
这节课是用天平“称次品”还是用天平原理“找次品”?天平在这节课中,是不是以一种抽象的数学化的形式存在于学生头脑中更好?因为一旦拿一架实物的“天平”进行试验,就不会出现“如果平衡......那么”“如果不平衡......那么”的情况,而只会出现其中的一种。
磁珠、数字卡片、扑克牌都是很好的学具,有这些“道具”拿在手上,学生更容易“入戏”,那么还有没有可能存在更好的学具?
我思考待测物品的数量——
要积累“找次品”的活动经验,一定是多次“找次品”,那么待测物品的数量该以怎样的次序出现?大家研究中,待测物品的数是2,3,5,8,9....为什么没有4,6,7?
一位老师开课提出在“2187瓶中有1瓶是次品”的问题,让学生猜测,然后3瓶、5瓶、9瓶、27瓶地研究,最后解决从2187瓶中找1瓶次品,只要7次,进而感慨“数学思考的魅力”,确实漂亮!但是,先繁后简再繁的教学结构是否让本已不堪重负的《找次品》雪上加霜?
“治大国如烹小鲜”,是否不要翻来覆去,而是抓住一个简单的,好好回味、咀嚼,品悟出其中的奥妙,这样更利于“并不玲珑”的学生接受?因为把“找次品”编入了普通教材,就不再是“数学精英们”的游戏了,而是飞入寻常百姓家的小燕子。让孩子们都能喜欢,是值得追求的。
不少课都是从3瓶中有一个次品开始研究的,那么我要问为什么不研究2瓶中有一个次品?没有价值吗?只怕是没有联系起来思考。
不少课是“3—5—9—8”的次序,自有存在的道理,但总觉得不美,给人凌乱的感觉。是否“3—5—8—9”,更有序,更舒服?为什么要躲“8”呢?天平有左右两个托盘,分成2份找次品是不是最自然、最朴素的思考?2015年启用的新版教材例2就是“8个零件中有1个是次品”,编者是怎么思考的呢?可惜的是我现在还看不到新版教材配套的教参。
我思考教学目标——
“任凭弱水三千,我只取一瓢饮。”用心观摩了10多节《找次品》的现场课,竭泽而渔地搜索60多篇有关《找次品》的文章之后,我制订的《找次品》第一课时教学目标是——
会解决简单的“找次品”问题。
会“如果...那么”数学地思维。
积累数学活动经验。
第三篇:找次品教案
数学广角:找次品
教学目标:
1、通过观察、猜测、画图、推理与合作交流等学习方法,探究找次品的策略,能够对问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
2、用天平找次品的过程中,让学生体验找次品的优化思想,就是排除更多的,尽量缩小次品所在的范围,让学生理解其数学思想和方法。
3、用数学方式表达自己的想法,在解决问题过程中能进行数学化思考。教学重点:
体验方法的多样化,能用自己的语言和符号进行解释。教学难点:
理解最优策略的数学思想方法。教学设想:
本节课想通过课前谈话引入次品,希望引入“次品”这个概念较为自然些。对本课素材的选取,也作了一定的思考,原本想用口香糖,但感觉口香糖吃掉几颗后,只能算是不完整的一瓶,称不上是次品,与题目“找次品”不恰当。后来用了网球,但感觉网球本身重量比较大,在实际生活中即使是正品,也会有重量之差,很难使天平平衡,考虑到实际问题,所以后来选用质量比较轻的乒乓球,作为本课的学具来贯穿整节课。
第一个教学环节,通过提问来寻找中奖者,想渗透本节课的思想,排除更多的,使目标所在的范围更小,这样更容易找到目标,从而来引入本题的思想主题。本课以2个球入手,起点较低,之所以起点这么低,是想通过此环节,让学生回顾和认识天平的工作原理,以保证后面活动的有效性。接下来,以3个球入手,通过利用天平找出3个球中的1个次品,让学生初步认识找次品这类问题及其基本的解决手段和方法,这块环节教学目标是否到位,将直接影响后续的学习,所以这块教学内容所花的时间较多。
接下来,直接跳到9个球,这是本课的重点教学环节,通过学生独立思考,并把思考的过程用示意图画出来,交流时呈现学生最原始的想法和画法,在此基础上进行引导和交流。先让学生把称的方法罗列出来,把他们的思想展现给大家,在此基础上教师进行板书引导,把示意图用其他的方式表现出来,让学生在观察、比较的基础上,引导学生去思考最优策略。本课的重心我不是放在解决此类问题的技巧上,而是放在数学思想方法上——优化思想,因为作为解题技巧,即使学生今天会,明天还会,但过一段时间后就会遗忘,而数学思想方法理解了,他一辈子都会牢记。像找次品这类问题,为什么平均分成3份,或尽量平均分,这是最优策略,要让学生“知其然,知其所以然”,所以在教学9个球后,又安排30个、100个球,称一次后,使目标所在的范围最小缩小到几里面,来理解其道理。让学生理解通过排除更多的,来缩小目标所在的范围,目标所在的范围越小,就越容易找到,这是本课的优化思想,也是我们整节课所想体现的。
教学过程: 一、课前谈话。
大家早上见过了一面,简单地认识了一下,谁能来介绍一下你们班级?(不知大家想不想了解一下我?那你想了解沈老师哪些方面?(身高、体重、年龄、电话、家庭住址、QQ号码„„)
当学生谈到身高体重时,引出我的身高是172厘米,按照身高与体重的标准的话,172厘米的体重应该是61千克,你知道我有多重吗?我有80千克。所以按照标准的话,我太胖了,如果我是一个产品的话,那我只能算一个“次品”,板书:次品。
二、活动铺垫,引入本课的数学思想。
师:请看这一幅图,这里有8个人物,大家都很熟悉吧。前两天,其中的一个人买彩票中了500万,到底是谁呢?
你可以提一个问题,沈老师只能回答“是”或“不是”。你的第一个问题会怎么问?
生可能提的问题:
生1:是不是男的?
生2:是不是戴眼镜的?
生3:是不是戴帽子的?
„„
当学生提出一个问题后,老师询问其结果。
师:通过这个活动,你有什么想说的?
小结:我们提出一个问题后,可以排除一些人,缩小目标所在的范围,直到最后找到目标。今天在这节课中我们就会用这种方法来解决一些问题。
三、讲授新课,学习新知。1、2个球中找次品。
师:像我这样的体形,一看就是次品,而有些产品是不是次品,刚看就不行了。比如,乒乓球,这是一个次品,这是一个正品,次品比正品略轻些。你有什么办法把它找出来?
学生思考后交流:
生可能的答案:
掂一掂、称一称„„
师:同学们想到了称一称,用什么称?
出示天平称图片。
师:怎么称?
学生解释如何称。
小结:两个球中有一个是次品,我们只需要称一次保证能找出来了。揭示课题:今天我们就来学习用天平称来找次品。
板书:用天平找次品 2、3个球中找一个是次品。
师:那如果有三个球,其中有一个是次品,你至少称几次一定能找到次品?
学生独立思考,思考后同桌交流。集体交流:把你的想法说给大家听。
学生上讲台,展示自己的想法。
教师根据学生讲的过程出示课件。
3个分成1、1、1,如果平衡,那剩下的一个是次品,只需要称一次
如果不平衡,那往上翘的这个就是次品,需要称一次
小结:看来,3个中找一个是次品,只需要称一次就能保证找到。
3、9个中找次品。
师:看来这些对同学们太没有挑战性了,那我要把数字变大些,9个,你觉得称几次保证能找出来?
学生思考后,在自己本上画一画示意图。
学生可能的分法: A、9 B、9 C、9 D、9(1、1、7)(2、2、5)(3、3、3)(4、4、1)
7(1、1、5)5(1、1、3)
3(1、1、1)共4次 5(2、2、2)2(1、1)
共3次 3(1、1、1)
共2次 4(2、2)
2(1、1)
共3次
教师引导学生观察、比较:有几种称法?哪种称法次数最少? 为什么这样的称法次数最小,请你比较一下其他的称法的区别?
引导学生观察第一次称完后,次品所在的范围。
引导学生明白,要使称的次数最少,就需要考虑如何称一次后,尽量缩小次品所在的范围,次品所在的范围越来越小,那称的次数就越少,越容易找到。
4、探究其方法。
(1)师:如果现在老师有30个乒乓球,其中有一个是次品,称一次后,你能使次品所在的范围缩小,最小缩小在几个里面? 学生思考后写下来。让学生比较、观察。
师:你发现了什么?
引导学生发现:平均分可以使次品所在的范围缩小到最小,这是找次品的好方法。板书:平均分,分成三份
(2)师:那如果我有100个怎么分呢?它不是3的倍数。
学生思考后同桌交流。学生反馈:
分成33、33、34,次品缩小到34个里面,范围是最小的。让学生思考有没有更小的,比34更少的。引导学生思考:不能平均分的,分得尽量平均。
四、延伸拓展。
师:接下来,你来考考老师看。
你出一个数,这个数表示球的个数,里有一个是次品,让沈老师算一算称几次保证能找到次品?看看沈老师的反应能力。1000以内吧。
学生出数字,老师口算。
师:想不想知道其中的奥秘,想学吗?
出示表格,让学生寻找规律。
师:要保证5次能测出次品,待测物品可能是几个?
学生思考后回答。
五、课堂小结。
通过本节课的学习,你学到了什么,你有什么收获?
第四篇:找次品教案
教材分析:
“找次品”问题是人教版五年级下册“数学广角”的内容,“数学广角”的目的是让学生经历建模的过程,初步感悟重要的数学思想与方法,提高学生的问题解决能力与推理能力。这些内容往往是从一些经典的数学问题中改编而来,承载着多元的教育价值,教师对这些内容所蕴含的重要数学思想的把握,能否在课堂上给予学生探索、发现的空间,以及是否在学生思考困难处进行适当的点拨和引导,是上好这类课的关键。由于学生的数学能力发展水平存在着一定的差异性,故教师的教学目标达成不易“一刀切”,教学中真实的差异性体现是正常的,教学中应尽可能让每个学生在自己原有的水平上有所发展。
分析教材的内容及编排意图,先研究“5个零件中找1个次品的方法”让学生初步认识“找次品”这类问题及其基本的解决手段和方法,通过学生的自主操作,感受到同一个问题解决的方法可能是多种多样的。教参指出,优化的思想在这里可不强调,只要学生在观察、对比、交流中对优化有所感悟即可。接着,安排例2通过让学生探索和比较找次品的多种方法,体会解决问题策略的多样性及运用优化策略解决问题的有效性。通过总结、猜测、归纳出优化方法的过程,进而培养学生的推理抽象能力。教材给我们提供了一个基本的教学思路,但是如何根据学生实际设计有序的教学进程,如何让学生经历优化方法的提炼和应用过程,不仅知其然更知其所以然,是值得我们教者思考和深入尝试的。
教学目标:
1、通过观察、猜测、操作、推理等活动,经历多样化解决问题的全过程,分析、比较、概括出最优化的方法,发现这类问题其中蕴含的数学规律。
2、在探究活动中,培养学生的逻辑推理能力和口表达能力,提高思维的条理性。
3、逐步渗透最优化的数学思想和化繁为简解决问题的意识。
教学重难点:
借助实物操作、画图等活动理解题意,在解决问题的基础上归纳出最优的分组策略,寻找被测物体数量与保证找到次品的最少次数之间的关系。
设计理念:
1、从小数据入手明确所要解决的问题
课始,我以微软公司的招聘问题引入,使学生初步感知“找次品”问题的特点:一是用没有砝码的天平来称;二是要从保证找到次品的各种次数中寻找最少的次数。学生凭借自己的第一感觉会胡乱猜测,此时,我顺势引入解决问题的程序,即波利亚所说的“从最简单的做起。”让学生通过2、3、4、5的解决逐步明确问题的步骤:2的解决让学生看到尽管没有砝码,但根据不平衡的一端可判断次品是誰;3的解决让学生运用想像,口头述说天平称重时的两种情况——平衡和不平衡,进一步推理出次品所在,这里也同时让学生感悟“不称”也是“称”,运用推理也是一种判断方法;接着让学生通过操作棋子来探究5,发现解决问题的方法是多样的,但是根据题意应从“最坏的情况”来选择结论,这个操作环节让学生动手又动口,把之前的判断推理方法同实物操作结合起来,是对抽象思维的具化。
2、借助特殊数据提炼最优化解决方法
“找次品”对学生而言之所以具有相当的难度,主要与学生生活中缺乏相关的经验有关,并且每个问题的解决都需要学生具备较高的思维水平。通过对教学难点的分解,我确定通过8、9两个特殊数据的解决为学生构筑起思维的坡度,让学生在每个数据的解决、分析和比较重逐渐感悟这类问题的解决方法,逐步实现方法的优化。例如8的解决过程中,学生会出现二分法和三分法,这两种方法的结果是不同的,通过两者的比较,学生初步感知能否在保证找到的前提下寻找到最少的次数,是同物品的分组有关,即分成几组是很有讲究的;接着,通过9的汇报,学生发现在同样分成三组的情况下,(4,4,1)和(3,3,3)的结果也是不同的,感悟到均分三组似乎更合理。当然,仅凭一个特殊的数据来说明问题略显单薄,因此,我紧接着设计了25,这个数据能调动起学生在三分法前提下的各种分法,(12,12,1)、(9,9,7)、(8、8、9)、(10、10、5)等,通过比较分析,发现(9,9,7)、(8、8、9)都能得到正确的结果,因为它们同“均分三组”的结果更接近,由此得出优化的方法——尽可能地将物品平均分成3份。上述过程,问题的分析由表及里,思考逐渐深入,让学生在比较、分析和验证中经历了问题解决的优化过程,比较符合学生的认知规律。
3、数形结合帮助理解数学的思想方法
通过以上这些数据的探究,学生一般都能发现最少需要的次数同均分成三组有关,也能列举具体称量的过程,但是为什么这样称,学生并不知道,或者说部分优秀学生通过实践已经有了一些感触但仍很难道明。其实,要说明为何这种方法最快,还需概率论的知识,但这明显超出了学生已有的学习水平和能力。如何用更直观易懂的方法来帮助学生理解这一道理呢?经过多次尝试,我设计了数形结合、图例说明的方法来阐述“三分法”的合理性,让学生借助分圆明白三分法能把称一次后次品所在的范围缩小到最小,因为次品的搜索范围小了自然找到次品的速度也加快了。同时,这一数形结合的说理环节也是对问题解决过程的归纳和数学方法的概括,让本节课的学习更具数学味和深度。当然,“找次品”这节课所能挖掘的知识点还有许多,一节课难以面面俱到。例如一些随机数据的探索,将进一步向学生渗透区间的知识,发现这类问题的数据分组特点,这样,各个环节的知识紧密联系、循序渐进,加深了学生对优化思想的理解。教学过程: 第一课时
教学活动
活动1【导入】
一、弄清题意,激发探究欲望
(一)比尔盖茨的招聘问题
微软公司在全球招聘员工时曾经出了这样一道题:
有81个铁球,其中一个是轻一点的次品,如果用没有砝码的天平来称。你最少称几次就能保证找到次品?
学生自由猜想,预设:80次,1次……
教师小结:1次虽少,但是只是有可能,无法保证找到那个球,所以我们在思考这个问题时不光要最少,还要以能保证找到为前提。(课件突出:最少 保证找到)这个问题就是数学中著名的“找次品”问题。(板书课题)
(二)从简单问题入手
提问:81个似乎太大了,我们从小数目入手研究吧。同学们想先称几个? 预设学生:2个、3个
2个——3个(为什么只称1次就够了?)
课件配合学生回答:称3个小球,任意取2个小球放在天平两端,可能平衡也可能不平衡,如果平衡,那么第三个小球就是次品;如果不平衡,那么天平翘起的哪一端就是次品。所以,不论是否平衡,我们只需称一次,就能找出那个较轻的次品。
活动2【讲授】
二、简化问题,弄清基本方法
研究4个:
提问:现在数量增加,如果是4个小球,最少要称几次呢? 让学生到讲台前来操作演示,呈现(2,2)或(1,1,1,1)的方法。引导:采用(1,1,1,1)称小球的时候,如果不平衡,说明翘起的那一端是次品,那我能说一次就够了吗?
强调:这是运气好的情况,要确保找到小球必须从最坏的情况去考虑。
称完(2,2)或(1,1,1,1)后,小结:这两种方法不同,但都只需要两次就保证找到次品。研究5个:
自己试摆——抽生黑板上演示,板书:5(2,2,1)(1,1,1,1,1)
延伸:对于小数目的2、3、4、5,我们都已经解决,如果小球数量再多些,可以吗?
活动3【活动】关键数目,感受优化方法
探究8、9个:
自主操作:同桌合作;选择8个或9个中的一种,借用棋子在天平纸上摆一摆,帮助思考。汇报交流:
让学生说出分组方法以及称的过程,教师板书。
8(4,4)4 1+2=3次 8个(3,3,2)1+1=2次 8(3,3,2)平2 不平3 比较:为什么同样是称8个小球,所用的次数却不一样?
引导学生初步发现:称的次数和分组有关,一个是分两组,一个是分3组。
进一步思考:将8分成(3,3,2)只要称2次,而分成(4,4)却要称三次,这多称的一次在哪里?
小结:第一次称了3和3,接下来从最坏的情况去考虑,要从3中去找次品,只需要再称1次;而称了4和4,,接下来就要从4中去找次品,还需要2次。
(二)初步提炼方法: 我们再来看看9的结果,你是怎样称的? 反馈:(4,4,1)3次(3,3,3)2次
比较:这两种称法,都是分成了3组,为什么结果不一样?
发现:一个是平均分成3份,称一次后次品是从3个当中找;一个是分成(4,4,1),次品是从4个当中找,所以次数就多了一次。
小结:怎样分,才能既保证找到次品,又能使称的次数尽可能地少呢?你有什么建议? 预设学生回答:平均分成3份。——那不能平均分成3份呢?(教师手指8的(3,3,2,)。)小结:尽可能地平均分成3份
(三)操作验证方法
1、集体验证:是吗,我们一起来验证一下吧,再找个大点的数吧。(板书:25)学生尝试,汇报:25(8,8,9)称了一次以后,不论是从8或9中找次品都还需要2次。
2、自主验证:请你自己也选择一个数来验证一下吧。学生自己在练习纸上先尝试,然后进行交流,教师板书结果。
活动4【讲授】数形结合,直观理解算理
教师运用课件配合图例解释:看来尽可能地平均分成3份,就能用最少的次数保证找到这个次品。这是为什么呢?(把任意个数的一堆小球看成一个圆,平均分成2份,称一次后,发现次品藏在哪里?这一份就是总是的1/2。
平均分成3份,不管平不平衡,次品都要在三份中的一份去找,也就是藏在总数的1/3里。
平均分成4份,从最坏的情况去考虑,次品就藏在剩下的两份中,要在总数的几分之几中去找呢?
(比较一下:在总数的1/3和总数的2/4,哪个范围更小些,找起来更快些?)平均分成6份,次品所在的范围是总数的4/6;平均分成8分呢? 引导:你发现了什么? 小结:平均分成3份,次品所在的范围最小。(板书:均分三等——缩小范围)
活动5【活动】应用方法,发现数学规律
1、现在你能解决比尔盖茨的招聘问题吗?(板书:81(27,27,27)27(9,9,9)观察:物品个数3,9,27,81和各需要的次数,你发现了什么?
为什么小球数量依次乘3,次数只是依次加1呢?(因为只要把这个数均分3组,就能得到刚才的数量,那么只需要在原来的基础上多称一次就可以了。)
发散:接下去,称5次最多是几个?(243)如果最少称15次,最多能从几个小球中找到这个次品?(出示:3的15次方等于14348907)你能想象这些小球能有多少?恐怕一个教室都放不下,但是其中要找出一个次品却只需要15次,你有什么感受?(解决问题时,采用优化的方法,就能把复杂问题化繁为简。)
活动6【作业】总结回顾,延伸探究热情
回顾我们这节课的学习,我们从招聘问题引发思考,从小数目着手研究,通过尝试、比较、分析,发现并概括出了最优的分组方法,进而还继续通过大数据的检验,发现了要称物品的数量与最少需要次数之间的数量关系,是不是特别有成就感?对于今天的学习内容,你还有什么疑问吗?
预设学生提出:如果不是3的倍数我怎么办呢?
这个问题就留给大家回去思索,你们通过研究会发现更有趣的结论。
第五篇:找次品教案 - 公开课
《找次品》教案 李钰程
教学内容:人教版数学五年级下册数学广角第111-113页的内容。课型:新授课 教学目标:
1.通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。2.学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。
3.通过解决实际问题中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:借助实物操作、画图等活动理解并解决简单的“找次品”问题,经历由多样化到优化的思维过程。渗透数学思想方法。教学难点:从解决问题策略的多样化中发现最优策略。教学准备:多媒体课件、学生每人准备圆纸片。教学过程:
一:创设教学情境,引入课题
课前谈话师:同学们,李老师经常听王老师说咱们五(3)班的孩子思维敏捷,聪明好学,今天老师就来考考大家,看看谁最棒。二:探究新知
活动 1课件出示
2瓶口香糖图片
同学们,李老师呢喜欢吃口香糖,现在老师这有2瓶口香糖,但是其中有一瓶被我吃掉了一个,你有什么办法可以把它找出来吗? 生:思考
师:现在老师想听听你们的办法。生:汇报数一数天平来称用手掂一掂
师:刚才同学们说可以用天平来称,天平大家都见过,课件出示天平
师:如果用天平称,可以怎样找出少了的一瓶?现在请同学们把你的想法给全班同学分享一下。生:汇报天平原理
天平左右各有一个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会下垂,轻的一端就会上扬。师:通过刚才的演示,我们发现天平不平衡,天平翘起来的那瓶就是吃了的那瓶。
师:小结在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就一起来研究如何利用天平“找次品”。板书课题:找次品 活动2 师:咱们5(3)班的孩子真是智慧多多,现在李老师就带领大家一起走进智慧岛,来一场智慧大闯关,大家有没有信心? 生:汇报
师:刚才咱们是2瓶口香糖,现在如果是3瓶口香糖,其中一瓶吃了一粒,你还能把吃过的那瓶找出来吗?你打算用天平怎样称,请同学们开动你的小脑筋。生:思考
师:谁来说一说可能出现那种情况? 生:汇报 课件展示:
师:我们可以在天平两端各放一个,如果天平不平衡,说明天平翘起来的哪个是吃了的,2号就是吃了的那瓶就是次品。如果天平平衡,另一瓶3号就是吃了的那瓶。师:边讲解边用图板书
师:有没有天平左边放2个,右边放一个的? 师:强调放在天平两边物体的个数应相同 活动3 师:接下来的问题更难了
课件出示:有四盒乐事薯片,其中一盒少了3片,你能设法把它找出来吗?请同桌和小组互相说说自己的想法也可以用你的学具摆一摆。生:思考交流 师:谁愿意汇报一下? 生:汇报过程 课件出示 师:边讲解边板书
结论:4瓶至少要2次才可以找出次品。师:我们接着往下看。活动4 有5盒糖果,其中4盒质量相同,另有一盒少了几颗。如果用天平称,至少称几次可以保证找出这袋这盒糖果?
师:现在请同学们小组互相说一说你的方法,可以像老师一样用图示法写出来,看看至少称几次可以保证找出这袋这盒糖果?比比谁最棒!生:交流
师:谁来谁说你找到了几种方法? 生:汇报 师:板书 活动5
有6袋葡萄干,其中有一袋是次品(质量不足),如果用天平称,至少称几次可以保证找出这袋葡萄干? 活动6 有7 瓶药片,其中1 瓶中少2 片,用天平称,最少称几次就一定能 找出次品来?
活动7 师:咱们班的孩子真是太棒了,咱们接着往下看 课件出示8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次就一定能找出次品?
师:请同学们同桌合作,选择自己喜欢的方法做一做,看看至少称几次就一定能找出次品? 生:思考交流
师:谁来谁说你找到了几种方法? 生:汇报
师:表讲解边板书根据学生的回答同步用图示法板书学生的操作步骤:
活动8 师:咱们班的同学真是智慧多多,接下来的问题就更难了。咱们再往下看
课件出示
如果9个零件里有1个是次品(次品重一些)。用天平称,至少称几次就一定能找出次品?
师:同学们可以像老师这样用画图的方法,把这个次品找出来,开始 生:思考交流
师:老师发现大家的方法不一样,你们现在可以小组交流一下自己的方法。看看可以分几组,至少几次找到次品? 生:交流
师:谁愿意把你的好方法跟全班同学分享。生:汇报
师:指名汇报,根据学生的回答板书:
师:9有很多种分法,不同的分法导致最后分的次数不一样,我们看看用哪一种方法保证能找出次品需要称的次数最少? 生:交流汇报
师:我们发现了最好的分法是怎么分? 生:汇报平均分为3组,这样至少称2次。
师:大家对比一下9(4,4,1)和9(3,3,3),同样是分成3份,为什么后一种需要称的次数少? 生:汇报
师:看来在遇到能够平均分的数时,我们把它平均分为三份一定称的次数最少,保证一定找到次品,师:有些数可以平均分成3份,比如9,假如有些数不能平均分成3份又该怎么办呢?这个规律还能不能成立?比如8,怎样分的次数最少呢?我们一起再来看看。
师:小结指名汇报,分析学生的分析过程。不能平均分的,把待测物品分成三份;也应该使多的一份与少的一份只相差1。这种方法保证能找出次品需要称的次数最少。
三:巩固练习
现在请同学们用你刚才发现的方法,找出11个、12个零件中的一个次品,(次品重一些),看是不是保证找出次品的次数的最少的? 四:布置作业
做一做:有 28 瓶水,其中 27 瓶质量相同,另有1 瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水
五总结通过学习,1.今天研究了什么问题?2.找次品的最优化策略是什么?
六、升华经验成果 深化数学内涵
师:我们所探究出的找次品的方法其实和四年级所探究的烙饼问题、田忌赛马问题等一样,就是寻找解决问题的最优策略,因为这样能够事半功倍!
师:其实待测物品的数量与至少要称的次数之间是有规律的(出示“你知道吗?”)大家课下预习一下,下节课我们再研究。七板书设计找次品