第一篇:微波烧结技术研究现状
微波烧结技术研究现状
引言微波与无线电、红外线、可见光一样都是电磁波,只不过微波是一种高频电磁波,其频率范围为0.3~300GHz,波长为1mm~1m。微波加热技术源于第二次世界大战,当时美国负责维修雷达的工程师经常发现口袋里的巧克力会熔化掉,这才意识到电磁波对物质有加热、干燥的作用,因而引发了人们对这项技术的研究[1]。微波烧结是一种材料烧结工艺的新方法,与常规烧结相比,它具有升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,并能提高产品的均匀性和成品率,改善被烧结材料的微观结构和性能。21 世纪随着人们对纳米材料研究的重视,该技术在制备纳米块体金属材料和纳米陶瓷方面具有很大的潜力[2 ],该技术被誉为“21 世纪新一代烧结技术”。微波烧结技术工作原理微波烧结是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的在电磁场中的介质损耗使其材料整体加热至烧结温度而实现致密化的方法。微波烧结原理与目前的常规烧结工艺有着本质区别[3~5 ]。由于材料可内外均匀地整体吸收微波能并被加热,使得处于微波场中的被烧结物内部的热梯度和热流方向与常规烧结时完全不同。微波可以实现快速均匀加热而不会引起试样开裂或在试样内形成热应力,更重要的是快速烧结可使材料内部形成均匀的细晶结构和较高的致密性,从而改善材料性能。同时,由于材料内部不同组分对微波的吸收程度不同,因此可实现有选择性烧结,从而制备出具有新型微观结构和优良性能的材料。在微波烧结炉中采用微波发生器来代替传统的热源,它与传统技术相比较,属于两种截然不同的加热方式。微波介质进行加热,化学原料一旦放入微波电场中,其中的极性分子和非极性分子就引起极化,变成偶分子。按照电场方向定向,由于该电场属于交变电场,所以偶极子便随着电场变化而引起旋转和震动,例如频率为2.45GHz,以每秒24亿5千万次的旋转和震动,产生了类似于分子之间相互摩擦的效应,从而吸收电场的能量而发热,物体本身成为发热体。当用传统方式加热时,点火引燃总是从样品表面开始,燃烧从表面向样品内部传播最终完成烧结反应。而采用微波辐射时,情况就不同了。由于微波有较强的穿透能力,它能深入到样品内部,首先使样品中心温度迅速升高达到着火点并引发燃烧合成。烧结波沿径向从里向外传播,这就能使整个样品几乎是均匀地被加热,最终完成烧结反应。微波点火引燃在样品中产生的温度梯度(dT,dt)比传统点火方式小得多。即微波烧结过程中烧结波的传播要比传统加热方式均匀得多。图1 微波烧结设备结构图[6 ]微波烧结技术优点[7 ] 1.烧结温度大幅度降低,与常规烧结相比,最大降温幅度可达500 ℃左右。2.比常规烧结节能70 %~90 %,降低烧结能耗费用。由于微波烧结的时间大大缩短,尤其对一些陶瓷材料烧结过程从过去的几天甚至几周降低到用微波烧结的几个小时甚至几分钟,大大得高了能源的利用效率。
3.安全无污染。微波烧结的快速烧结特点使得在烧结过程中作为烧结气氛的气体的使用量大大降低,这不仅降低了成本,也使烧结过程中废气、废热的排放量得到降低。4.使用微波法快速升温和致密化可以抑制晶粒组织长大,从而制备纳米粉末、超细或纳米块体材料[8 ]。
5.烧结时间缩短,相对于传统的辐射加热过程致密化速度加快,材料内外同时均匀加热,这样材料内部热应力可以减少到最小。其次在微波电磁能作用下,材料内部分子或离子的动能增加,使烧结活化能降低,扩散系数提高,可以进行低温快速烧结,使细粉来不及长大就被烧结。
6.能实现空间选择性烧结[9-10]。微波烧结发展史材料的微波烧结开始于20世纪60年代中期,W.R.Tinga[11]首先提出了陶瓷材料的微波烧结技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand[12]开始对微波烧结技术进行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用,相应的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美国、日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于1988年将其纳入“863”计划。在此期间,主要探索和研究了微波理论、微波烧结装置系统优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温度场计算机数值模拟等,烧结了许多不同类型的材料。20世纪90年代后期,微波烧结已进入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已具有生产微波连续烧结设备的能力。国内目前仅有SYNOTHERM自2002年由归国博士彭虎等人组建了专家团队在国内融资成立了长沙隆泰微波,进行了较大的投入对材料微波工艺研究,实现了部分高温领域实验与产业化工业微波装备的研制实施和应用。国内其他从事微波产业化设备的机构与企业主要针对低温微波杀菌、硫化等食品、医药、木材等等行业。微波加热自蔓延高温成则是微波应用的另一重要方面。1990年,美国佛吉尼亚州立大学的R.C.Dalton等首先提出微波加热在自蔓延高温合成中的应用,并用该技术合成了TiC等9种材料。接着,英、德、美的科学家相继用此法合成了YBCuO,Si3C4,Al2O3-TiC等材料。1996年,美国J.K.Bechtholt等对微波自蔓延高温合成中的点火过程进行了数值模拟分析,通过模拟准确计算了点火时间。1999年,美国S.Gedevabshvili和D.Agrawal等用该技术合成了Ti-Al,Cu-Zn-Al等几使种金属间化合物和合金。美国宾夕法尼亚州州立大学的Rustum Roy,Dinesh Agrawal等用微波烧结制造出粉末冶金不锈钢、铜铁合金、钨铜合金及镍基高温合金。其中,Fe-Ni的断裂模量比常规烧结制备的大60%。另外,高磁场条件下的微波烧结能够制备长骨完全非晶态的磁性材料,将具有显著硬磁特性的材料(如NdFeB永磁体)变成软磁材料。各种材料的介电损耗特性随频率、温度和杂质含量等的变化而变化,由于自动控制的需要,与此相关的数据库还需要建立。微波烧结的原理也需要进一步研究清楚。由于微波烧结炉对产品的选择性强,不同的产品需要的微波炉的参数有很大差异,因此,微波烧结炉(synotherm)的设备需要投资增大。今后微波烧结设备的方向是用模块化设计与计算机控制相结合。微波烧结研究现状纳米材料的研究一直是材料界的研究热点,虽然纳米粉末的制备不是很容易,但是比较起来,具有纳米晶粒的块体材料的制备更难,是困扰研究人员最大的问题之一。而微波烧结技术所具有的烧结温度低、时间短等特性为成功地制备具有纳米晶粒的块体材料提供了可能。
1、微波烧结纳米金属陶瓷的研究[13]陶瓷烧结过程中不可避免地伴有晶粒长大,所以如何控制纳米颗粒在烧结过程中的长大,使其保持原有特性是纳米块体陶瓷材料制备面临的一个难题,而微波烧结技术很好地克服了这一点。晋勇等[14],采用微波烧结新技术研究了纳米金属陶瓷材料的烧结工艺与性能。结果表明,微波烧结Al2O3MoAl2O3-B2O3-SiO3体系玻璃粉按一定比例与HAP 粉混合,采用等静压成形及微波烧成两种成形方法对羟基磷灰石-玻璃复合粉体成形,分别在1 150℃、1 200 ℃、1 250 ℃下微波烧结。实验表明,采用微波烧结有利于样品的快速致密化,用微波烧结的样品的收缩率明显比用普通烧结法在相同温度下烧结的样品收缩率小。微波烧结是有效的生物陶瓷材料的烧成方法,收缩率、密度和SEM观察结果表明,采用等静压成形和微波烧结HAP64 [4].Sutton W H.Am Cerma Soc Bull,1989,68(2):376-381 [5].Sheppared L M.Am Cerma Soc Bull,1988,67(10):1656 ~1662 [6].范景莲,黄伯云,刘军,吴恩熙.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1):29~32 [7].易建宏,罗述东,唐新文等.金属基粉末冶金零部件的微波烧结机理初探[J].粉末冶金工业,2003,13(2):22~25 [8].周健,程吉平,袁润章等.微波烧结WC468.[9].胡晓力,刘阳,尹虹等.微波烧结Al2O351 [10].Black R D,Meek T T,Microwave processed compositematerials[J ].J Mater Sci L et al,1986,5 :1097-1098.[11].Anklekar R M,Agrawal D K and Roy R,Microwave sintering and mechanical Properties of PM copper steel[J ].Powder Metallurgy,2001,44(4):355 – 362 [12].Berteaud A J,Badet J C.High temperature microwave heating in refractory materials.Microwave Power,1976(11):315~320 [13].孙振华,郝斌.微波烧结制备陶瓷材料的研究进展[J ].陶瓷,2010(1):12~13,23 [14].晋勇,薛屺,汤小文等.纳米金属陶瓷材料的微波烧结工艺研究[J ].机械工程材料,2004,28(12):49~51 [15].卢冬梅,万乾炳,晋勇.牙科全瓷材料的微波烧结研究[J ].四川大学学报,2003,40(6):1 114~1 118 [16].吴娜,王志强,李长敏,等.羟基磷灰石-玻璃复合陶瓷的微波烧结.硅酸盐通报,2006,25(4):54~58 [17].Roy R,Agrawal D,Cheng J P,et al.Full sintering of powderred—metal bodies in a microwave field[J ].Nature,1999,399(17):665 [18].Samuei J,Brandon J R.J Mater Sci,1992,27(12):3259~3262 [19].Anklekar R M,Agrawal D K,Roy R.Microwave sintering and mechanical properties of PM copper steel[J ].Powder Metallurgy,2001,44(4):355~362 [20].Cheng J P,Agrawal D,Zhang Y H,et al.Fabricating transparent ceramic by microwave sintering.American Ceramic Society Bullite,2000,79(9):71 – 74 [21].曾小峰,彭虎,钱端芬,等.微波烧结AlN 陶瓷的初步研究.硅酸盐通报,2005(3):29~32 [22].丁明桐,杜先智,陈凡等.Y-ZrO2 稀土增韧陶瓷的微波烧结[J].安徽师范大学学报,2000,23(4):344-3461
第二篇:建筑节能门窗及技术研究现状
建筑节能门窗及技术研究现状
作者:陈胜斌
摘 要:
建筑节能标准越来越高,门窗节能为关键环节,为了提升建筑门窗的节能性,首先要对建筑节能门窗及技术的现状进行研究。本文主要通过对门窗的结构设计、所使用的材料、遮阳系统技术及保温密封性能等几方面的现状进行分析、探讨,掌握结构设计、材料使用、技术应用的现状及趋势,为研发具有更好的节能效果、适用范围更广、更加经济的节能门窗提供参考。关键词:
建筑节能;节能门窗;门窗材料;遮阳系统
正文:
建筑结构中门窗为比较特殊的环节,通过门窗使室内外得以联通,可以达到采光、通风采景的效果,又有遮阳、隔声、防水的作用,才使建筑物适宜人类使用,为其赋予了生命的色彩,所以门窗在建筑中至关重要,有关数据表明通过门窗损失的能量约占建筑围护部件总能耗的50%左右,比墙体、屋面、地面所占比重都多,因此,于建筑节能而言,门窗便成为提高节能标准的关键环节。
“十二五”规划对建筑节能标准要求越来越高,同时也对节能门窗的设计和制造提出了新的要求。要想提高门窗的节能性能,就要从结构设计、材料选用和其它配套装置设计着手研究。本文主要从门窗的结构设计、关键材料选用、遮阳技术及经济节能几个方面了解建筑节能门窗及技术的研究现状。节能门窗结构设计
门窗结构的不同严重影响门窗的保温隔热性能。目前国内广泛使用的门窗结构为推拉窗、平开窗和固定窗。
推拉窗的优点为不占用空间,工艺简单,使用方便,但窗扇与窗框间不可避免的间隙导致室内外冷热空气对流从而大大降低了门窗的隔热性能。
近来,平行推拉上悬窗使用零件链接门窗扇与门窗框,并通过零件在设置的轨道内滑动,使门窗扇在开启时整体离开门窗框平面,闭合时整个门窗扇同时紧压在框材上,大大提高了推拉窗的气密性,达到了节能的目的。平开窗与固定窗密闭性都良好,所以,造成热损失的主要是通过玻璃及框架本体的热传导及辐射传递出去的。因而,对平开窗及固定窗的节能研究主要从型材选料的改进及研发新型节能材料入手(下文会详细阐述)。也有一些学者从更细微的角度入手,如开窗方式采用遥控式来提高门窗的密闭性。节能门窗关键材料
门窗整体节能效果由其各部分组成材料的性能决定,下面对目前窗框、玻璃材料现状及发展进行分析。2.1 窗框材料
木质门窗、塑钢门窗和铝合金门窗为我国目前使用比较广泛的窗框材料,以下就其材质优劣及现有技术对其改进方案进行简述。
木质门窗为我国传统门窗使用材料,其保温性能及牢固性都不如其它材料,成本却很高,但其美观性能比较强,且绿色环保,近年来,有些企业从欧洲引进最新的技术、装备,使用集成木材制作门窗框扇。技术水平与国外同步,新型木质牢固、导热性低、生产工艺先进、美观、环保,但由于其成本过高,在我国仅用于高端门窗。科研人员继续从树木种类的选择及加工工艺进行研究,以改进木质门窗的质地,节约生产成本。
塑钢门窗比较坚固,但防火性差,燃烧后会放出有毒气体,且材质易老化,使用寿命短。针对这些问题科员人员进行了大量研究,对塑钢本身性能的改进做了两大突破,一是通过用马来酸接枝顺丁橡胶混合改性聚氯乙烯,同时加入硬脂酸锌,使其改良断裂强度比之前提升了50%。二是使用水滑石水滑石制备PVC 复合材料,提高了PVC 材料阻燃性能和抗紫外线性能,使其阻燃性能较改良前提升了50%。不仅对塑料本身性能进行了改进,并对塑钢门窗型材的设计及选材提出新的要求,以减少建筑内的能量损失。如对塑钢型材增加厚度,在型材内腔使用发泡材料填充来达到更好的保温效果,更换衬材材料以降低门窗框的导热性。
铝合金门窗曾广泛被业内采用,但由于其保温性能不及塑钢门窗且导热性好,这就增加了建筑内部能量的流失,所以有段时间被塑钢门窗取代。后来断桥技术的推广,在双层铝片之间加入塑料隔热条,同时对铝型材结构从新设计,不仅解决了铝型材导热性能好的问题,还起到了装饰的作用,得到业界的欢迎,后来又对其进行改进,在隔热条之间的空腔内添加发泡材料增加保温性能。之后又在此基础上设计铝木复合门窗,既进一步提高了其保温性能又增加了视觉效果,达到了良好的装饰作用。2.2 玻璃材料
玻璃通过热辐射及热传导造成建筑内的热量损失,且玻璃占窗户80%左右的面积,所以,为保证窗户的节能效果玻璃的选用则至关重要。普通透明玻璃会透过90%以上的太阳辐射,且保温性能较差,为了提高玻璃的节能性,研发人员经过探究与实验,将普通透明玻璃表面进行加工处理,使其辐射降低便衍生出了Low-E 玻璃。又将玻璃片与内含干燥剂的铝合金框架粘结,制成的中空玻璃,起到良好的隔声隔热性能。之后又将这两种技术合二为一,并参入一些特殊元素,改进玻璃组合构造,使现在门窗使用的玻璃材料具有良好的隔声、隔热、保温、环保、健康的性能。节能门窗相关技术
对门窗的组成材料进行替换、改进自然能起到一定的节能效果,但为了更进一步节能则需要依托一些技术来配合。下面就节能门窗的遮阳技术及热模拟技术进行简述。3.1节能门窗遮阳技术
炎热的夏季,太阳辐射比较严重,建筑则需要起到很好的遮阳作用,此时节能门窗的遮阳效果则略显不足,就需要依托遮阳系统来辅助,来达到更好的遮阳效果。
遮阳系统是一种必不可少的建筑措施。从设立位置分类,建筑遮阳可分为内遮阳、外遮阳及中遮阳系统。科研人员经过不同的实验、测试,研究出不同地区、不同位置朝向、不同建筑风格可采用的各种遮阳系统,以便于对璃遮阳和建筑外遮阳产品的选择及搭配。通过采用不同的遮阳技术,与节能门窗相辅相成,加之后来研究对遮阳系统只能控制,遮阳系统不仅起到了节能的作用还可以调节室内环境,使其智能舒适。3.2节能门窗热模拟技术
如今计算机技术越来越发达,通过模拟不同气候下室内外环境及在该环境下对门窗的各项性能要求,来分析、研究门窗的节能性,可以大大降低研究成本,提高更新效率,缩短研发周期,很好的促进门窗节能方向的发展。
而模拟技术要面对的问题便是怎样使模拟结果与实际情况更加贴切,这便需要结合更精准的算法并优化、搜集设置更实际的参数、环境因素更加详细来提高模拟技术的准确性。作为门窗设计有效的重要手段,计算机模拟技术将迎来更加严峻的考验,这势必会使其更加迅速的发展。结论
“十二五”规划深化了我国节能减排的战略目标,建筑节能取得更大的进步,要依托于节能门窗的研发及推广使用,随着对节能门窗性能的深入研究,节能门窗的保温性能在不断提高,门窗结构在不断优化,综合考虑环境因素,今后节能门窗不仅起到节能的效果更会使室内环境智能化,使使用者更加舒适、健康,为人类创造更多的效益。
第三篇:微波简介
微波
微波是指频率为0.3GHz~300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在0.1毫米~1米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为秔透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是秔越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。目录
1词语概念 ▪ 基本信息
▪ 基本解释
▪ 引证解释
2微波波长 3微波性质 ▪ 秔透性
▪ 选择性加热
▪ 热惯性小
▪ 似光性和似声性
▪ 非电离性
▪ 信息性
4微波产生
5微波萃取原理 6热效应 7非热效应 8加热原理 9杀菌机理 10其它应用
1词语概念编辑 基本信息 词目:微波 拼音:wēibō
注音:ㄨㄟ ㄅㄛ 反义词: 巨浪 基本解释
1、[ripple]∶微小的波纹;
2、[microwave]∶指波长在0.1mm~1m之间无线电波。引证解释
1.微小的波浪。汉刘向《新序·杂事二》:“引纤缴,扬微波,折清风而殒。” 唐许浑《泛五云溪》诗:“急濑鸣车轴,微波漾钓筒。” 宋朱熹《喜晴》诗:“冲颷动高柳,渌水澹微波。”峻青《秓色赋·海娘娘》:“每当晴朗的早晨或是静谧的月夜,海上风平浪静,微波不兴。” 2.犹余波。汉司马相如《封禅文》:“俾万世得激清流,扬微波,蜚英声,腾茂实。” 南朝 梁 锺嵘 《诗品》卷上:“ 永嘉时,贵 黄 老,稍尚虚谈。于时篇什,理过其辞,淡乎寡味,爰及 江 表,微波尚传。” 卷盦 《<蔽庐丛志>序》:“景丛志而仰止,羗寄意於微波。” 3.指女子的眼波。三国 魏曹植《洛神赋》:“无良媒以接懽兮,托微波而通辞。” 清黄遵宪《都踊歌》:“中有人兮通微波,荷荷!贻我钗鸾兮餽我翠螺,荷荷!”高旭《赠沉孝则》诗:“惆怅佳人留片影,愿将心事托微波。”
4.物理学名词。指波长较短的电磁波。如:无线电通信中指波长在1毫米至十米之间的电磁波。[1] 2微波波长编辑
微波的频率在300MHz-300GHz之间,波长在1米(不含1米)到0.1毫米之间,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频无线电波”。微波作为一种电磁波也具有波粒二象性。微波量子的能量为1 99×l0-25~ 1〃99×10-22焦耳。3微波性质编辑
微波的基本性质通常呈现为秔透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是秔越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 秔透性
微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的秔透性。微波透入介质时,由于微波能与介质发生一定的相互作用,以微波频率2450兆赫兹,使介质的分子每秒产生24亿五千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。选择性加热
物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。热惯性小
微波对介质材料是瞬时加热升温,升温速度快。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。似光性和似声性
微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔 非电离性
微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键(部分物质除外:如微波可对废弃橡胶进行再生,就是通过微波改变废弃橡胶的分子键)。再有物理学之道,分子原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。另一方面,利用这一特性,还可以制作许多微波器件 信息性
由于微波频率很高,所以在不大的相对带宽下,其可用的频带很宽,可达数百甚至上千兆赫兹。这是低频无线电波无法比拟的。这意味着微波的信息容量大,所以现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。另外,微波信号还可以提供相位信息,极化信息,多普勒频率信息。这在目标检测,遥感目标特征分析等应用中十分重要 4微波产生编辑
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。在微波加热领域特别是工业应用中使用的主要是磁控管及速调管。5微波萃取原理编辑
模拟的有限孙宙微波背景辐射图象
利用微波能来提高萃取率的一种最新发展起来的新技术。它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间、节省试剂、污染小等特点。除主要用于环境样品预处理外,还用于生化、食品、工业分析和天然产物提取等领域。在国内,微波萃取技术用于中草药提取这方面的研究报道还比较少。
微波萃取的机理可从以下3个方面来分析:①微波辐射过程是高频电磁波秔透萃取介质到达物料内部的微管束和腺胞系统的过程。由于吸收了微波能,细胞内部的温度将迅速上升,从而使细胞内部的压力超过细胞壁膨胀所能承受的能力,结果细胞破裂,其内的有效成分自由流出,并在较低的温度下溶解于萃取介质中。通过进一步的过滤和分离,即可获得所需的萃取物。②微波所产生的电磁场可加速被萃取组分的分子由固体内部向固液界面扩散的速率。例如,以水作溶剂时,在微波场的作用下,水分子由高速转动状态转变为激发态,这是一种高能量的不稳定状态。此时水分子或者汽化以加强萃取组分的驱动力,或者释放出自身多余的能量回到基态,所释放出的能量将传递给其他物质的分子,以加速其热运动,从而缩短萃取组分的分子由固体内部扩散至固液界面的时间,结果使萃取速率提高数倍,并能降低萃取温度,最大限度地保证萃取物的质量。③由于微波的频率与分子转动的频率相关连,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24〃5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。〖图片说明:模拟的有限孙宙微波背景辐射图象,匹配的圆圈上具有相同的冷热分布。〗 6热效应编辑
微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响。热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加。如果生物体组织吸收的微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量)散发至全身或体外。如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高。局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等。7非热效应编辑
微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及化学效应等。在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等。微波干扰生物电(如心电、脑电、肌电、神经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍。对微波的非热效应,人们还了解的不很多。当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在在10mW/cm2者多产生微热效应。且频率越高产生热效应的阈强度越低);长期的低功率密度(1 m W/cm2 以下)微波辐射主要引起非热效应〃 8加热原理编辑
微波是频率在300兆赫到300千兆赫的电波,被加热介质物料中的水分子是极性分子。它在快速变化的高频电磁场(微波)作用下,其极性取向将随着外电场的变化而变化。造成水分子的自旋运动的效应,此时微波场的场能转化为介质内的热能,使物料温度升高,产生热化等一系列物化过程而达到微波加热干燥的目的。[2] 9杀菌机理编辑
微波杀菌是利用了电磁场的热效应和生物效应的共同作用的结果。微波对细菌的热效应是使蛋白质变化,使细菌失去营养,繁殖和生存的条件而死亡。微波对细菌的生物效应是微波电场改变细胞膜断面的电位分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。此外,微波能使细菌正常生长和稳定遗传繁殖的核糖核酸[RNA]和脱氧核糖核酸[DNA],是由若干氢键松弛,断裂和重组,从而诱发遗传基因秕变,或染色体畸变甚至断裂。10其它应用编辑
微波波长约在1m~0.1mm(相应频率约为300MHz到300GHz)之间的电磁波。这段电磁频谱包括分米波、厘米
24GHZ雷达传感器
波和毫米波等波段。在雷达和常规微波技术中,常用拉丁字母代号表示更细的波段划分。
以上关于微波的波长或频率范围,是一种传统上的约定。从现代微波技术的发展来看,一般认为短于1毫米的电磁波(即亚毫米波)属于微波范围,而且是现代微波研究的一个重要领域。
从电子学和物理学的观点看,微波这段电磁谱具有一些不同于其他波段的特点。微波在电子学方面的特点表现在它的波长比地球上很多物体和实验室中常用器件的尺寸相对要小很多,或在同一量级。这和人们早已熟悉的普通无线电波不同,因为普通无线电波的波长远大于地球上一般物体的尺寸。当波长远小于物体(如飞机、船只、火箭、建筑物等)的尺寸时,微波的特点和几何光学的相似。利用这个特点,在微波波段能制成高方向性的系统(如抛物面反射器)。当波长和物体(如实验室中的无线电设备)的尺寸有相同量级时,微波的特点又与声波相近,例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似于喇叭、箫和笛;谐振腔类似于共鸣箱等。波长和物体尺寸在同一量级的特点,提供了一系列典型的电磁场边值问题。
在物理学方面,分子、原子与核系统所表现的许多共振现象都发生在微波的范围,因而微波为探索物质的基本特性提供了有效的研究手段。
由于这些特点,微波的产生、放大、发射、接收、传输、控制和测量等一系列技术都不同于其他波段(见微波电子管、微波测量等)。
微波成为一门技术科学,开始于20世纪30年代。微波技术的形成以波导管的实际应用为其标志。若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微
微波传感器
波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
微波振荡源的固体化以及微波系统的集成化是现代微波技术发展的两个重要方向。固态微波器件在功率和频率方面的进展,使得很多微波系统中常规的微波电子管已为或将为固体源所取代。固态微波源的发展也促进了微波集成电路的研究。
频率不断向更高范围推进,仍然是微波研究和发展的一个主要趋势。60年代激光的研究和发展,已越过亚毫米波和红外之间的间隙而深入到可见光的电磁频谱。利用常规微波技术和量子电子学方法,已能产生从微波到光的整个电磁频谱的辐射功率。但在毫米波-红外间隙中的某些频率和频段上,还不能获得足够用于实际系统的相干辐射功率。
微波的发展还表现在应用范围的扩大。微波的最重要应用是雷达和通信。雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。通信应用主要是现代的卫星通信和常规的中继通信。射电望远镜、微波加速器等对于物理学、天文学等的研究具有重要意义。毫米波微波技术对控制热核反应的等离子体测量提供了有效的方法。微波遥感已成为研究天体、气象和大地测量、资源勘探等的重要手段。微波在工业生产、农业科学等方面的研究,以及微波在生物学、医学等方面的研究和发展已越来越受到重视(见微波应用、微波能应用、微波医学应用等)。
微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等,已经比较成熟。微波声学的研究和应用已经成为一个活跃的领域。微波光学的发展,特别是70年代以来光纤技术的发展,具有技术变革的意义(见微波和射频波谱学)。
常用的无线传输介质是微波、激光和红外线,通信介质也称为传输介质,用于连接计算机网络中的网络设备,传输介质一般可分为有线传输介质和无线传输介质!
从理论上说,微波可以充当一种武器,打击任何电子系统,让汽车、飞机和核电站陷入瘫痪。此外,微波武器还能在不导致伤亡情况下让人产生灼痛感,可用于驱散人群。[3] 控导波管上安装的发射器。电磁铁施加器(空腔)内的波导结构是来自于能量耦合。反射的电磁能量是依赖于的空腔的尺寸和介电加热的加热产品。通过使用调谐器的反射的电磁能量的量可以被最小化,以提高效率的最佳。
第四篇:微波工程师
东莞同济大学研究院2016招聘公告
一、微波工程师
(一)岗位要求:
1、硕士及以上学历。
2、微波电磁场,物理光学、通讯工程专业方向者优先。
3、有微波工程研发工作经验者优先。
4、熟练掌握电磁场仿真软件(如HFSS,CST,FEKO,ADS等)。研究方向:
1、微波天线设计研发。
2、微波射频电路设计。
3、电磁场理论和数值计算。
(二)待遇从优,具体面谈。薪酬方面:基本工资+岗位工资+津贴
激励方面:绩效工资+项目奖金+年终奖金+晋升空间
福利方面:五险一金+员工宿舍+员工培训+带薪假期+体检+人才落户
二、通信工程师
(一)岗位要求:
1、硕士及以上学历。
2、电子信息工程、通讯工程专业方向者优先。
3、熟悉无线通信系统调制、收发、解调等原理。有MIMO、数据链路的基础研究、技术开发经验优先。
4、熟练掌握通信系统仿真软件,硬件测试的使用方法。
研究方向:MIMO雷达、数据链应用研究。
三、科研助理
(一)岗位职责:
1、收集、了解与研究院业务相关的国家和地方优惠、扶持、奖励政策信息,查找各种产品荣誉、资质等相关项目申报条件、流程。
2、研究院项目跟踪、管理以及相关文件的撰写和编辑。
3、英文排版整理,英文会话和沟通。
4、协助编写科研工作总结和各类书面材料。
5、研究院相关技术文件的编辑和撰写。
6、完成其它科研助理工作。
(二)岗位要求:
1、硕士及以上学历,理工科背景、985、211高校毕业者优先。
2、熟练使用office等办公软件,有相关工作经验者优先。
3、要求具备较强的沟通能力和责任心,能高效完成工作。
4、为人正直、诚实守信;具备吃苦耐劳的精神。
四、量化(金融工程)研究员
(一)岗位职责:
1、对沪深A股、期货、外汇数据挖掘和分析,并辅助建立用于策略回测的数据库;
2、阅读大量文献并整理有关分形与混沌(或其他研究领域)的金融应用技术;
3、开发研究量化投资策略,编写matlab(或者TB、MQL5等程序化)程序;
4、对金融基本数据进行分析挖掘,开发相应的数据分析模块;
5、开展智能算法研究、辅助设计金融产品投资回测系统。
(二)任职要求:
1、金融学、金融工程、数学、物理、统计学、计算机相关专业;
2、硕士及以上学历;
3、对量化投资感兴趣,有较强的数理逻辑思维,有较强的学习能力和团队合作能力;
4、熟悉matlab(C++、java、VBA任一种编程语言)语言、有MQL5编程经验者优先;
5、应届毕业生对金融市场感兴趣或有证券从业经验或资格者优先;
6、有量化研究工作经验2年以上的待遇从优面议。
五、学术带头人
(一)方向:
1、光物理方向基础和应用研究院。
2、MIMO雷达、数据链应用研究。
3、金融工程。
(二)岗位要求:
1、海外归国留学博士、985、211高校毕业者优先。
2、熟练使用Office等办公软件,有相关工作经验者优先。
3、要求具备较强的沟通能力和责任心,能高效完成工作。
六、电磁场/微波理论与设计工程师
(一)岗位职责:
1、开展超材料电磁调控研究;
2、负责项目电磁调控理论研究,对项目组成员工开展相关的培训工作;
3、完成上级领导交办的其他任务。
(二)岗位要求:
1、熟悉电磁场理论,物理、光学、凝聚态物理等硕士及以上学历;
2、熟悉FDTD,掌握电磁、电路仿真等工具,如ADS,HFSS,CST;
3、有较好的英语水平。
七、电子元器件/电路设计工程师
(一)岗位职责:
1、基于LTCC工艺的陶瓷电子元器件/电路设计和性能评价;
2、根据材料参数设计相关的电阻、电容等薄膜电子元件,优化电路设计,协助完成射频天线相关产品的开发;
3、完成上级领导交办的其他任务。
(二)岗位要求:
1、物理、微电子等硕士及以上学历;
2、具有相关的研发工作经验。
八、材料技术工程师
(一)岗位职责:
1、基于LTCC工艺的片式多层陶瓷电子元件的制备及性能的评价;
2、开展相关工艺的研究,提出改进建议和优化方案;
3、实验室设备和日常维护工作;
4、完成上级领导交办的其他任务。
(二)岗位要求:
1、无机非金属材料(功能陶瓷、电子材料)、凝聚态物理、材料物理等硕士及以上学历;
2、具有MLCC/LTCC工艺研发工作经验者优先;
3、具有介电、铁电研究经验者优先;
4、有一定的专业英语水平,有较强的文献检索和资料收集能力。
九、材料工艺工程师
(一)岗位职责:
1、负责光刻实验室建设;
2、开展光刻工艺的研究,完成项目的目标;
3、实验室设备和日常维护工作;
4、完成上级领导交办的其他任务。
(二)岗位要求:
1、物理、材料等专业硕士及以上学历;
2、熟悉/了解光刻工艺或3D打印技术优先;
3、有一定的专业英语水平,有较强的文献检索和资料收集能力。
十、技术员
(一)岗位职责:
1、严格遵守和执行研究院各项管理制度和工作规范;
2、按要求进行实验操作,按规范使用和维护相关精密机械加工仪器;
3、实验数据和过程的记录及汇报,实验室的日常维护。
(二)岗位要求:
1、理工类本科学历,有机械、化学基础的优先;
2、动手操作能力强,有光刻、流延等相关工作经验者优先;
3、为人真正,工作认真负责,服从工作安排,吃苦耐劳,能承受一定的工作强度。
十一、电性能设计工程师(1名)
岗位职责:
掌握材料设计原理,利用超材料结构设计复合吸波材料,能承担材料物理机制探索、材料微结构设计,电磁仿真及实验验证等方面工作。岗位要求:
1.物理、材料类专业等硕士及以上学历,对电动力学、固体物理有较深理解;
2.对材料结构设计、吸波材料及吸波原理有一定认识,在材料微结构设计方面具有经验者优先; 3.掌握matlab编程设计、电磁仿真设计软件,如:CST、FDTD Solution、comsol等; 4.了解微波暗室测试、网络分析仪等仪器,并熟练掌握其使用方法。5.学习与文字能力较强,可查阅文献、整理资料、撰写文档等。
十二、吸波材料技术工程师(2-3名)
岗位职责:
1.开展磁性颗粒改性、与碳基材料复合及性能表征相关工作;(方向一)2.开展基于金属纳米线的透明导电薄膜的制备及表征等相关工作;(方向二)岗位要求: 1.材料类专业等硕士及以上学历,熟练掌握材料学的基本知识;
2.动手能力强,对材料制备、合成、表征有一定基础,有材料合成及复合背景优先; 3.学习能力强,具有文献查阅、撰写文档、专利、论文的能力; 4.能熟练操作实验室仪器设备,并进行日常的维护工作。
十三、数据库工程师
工作内容:
1)各类金融交易数据的清洗和整理,利用SQL等语言维护和实时更新数据库; 2)构建能根据建模组的要求快速生成查找相应的数据库存储结构; 3)定期维护检查数据库信息管理系统安全;
4)了解大数据、云计算等相关知识,为搭建数据平台做准备; 5)阅读文献,开展关于金融数据挖掘的算法和程序开发。岗位要求:
1)硕士及以上学历,熟悉任意一种数据库管理软件(SQL、Oracle、MySql),熟悉计算机网络和数据库基础知识;
2)熟悉一门编程语言(CC++,java,VB,python等); 3)对金融市场有兴趣并能很好参与团队合作;
4)具有相关经验1年以上者优先,具有数据平台搭建经验3年以上的,待遇从优; 5)欢迎有兴趣且志于在金融数据库开发的优秀应届毕业生。
十四、嵌入式硬件工程师 岗位要求:
1、硕士及以上学历。
2、电子技术、计算机、自动化控制等相关专业,能熟练阅读专业文献和技术资料。
3、具有扎实的模拟、数字、电源及控制电路等方面的相关理论基础知识和设计开发能力,熟悉单片机、FPGA、嵌入式系统等常见硬件电路及其外围电路和接口的原理和组成。
4、精通C语言与C++,有良好的编程风格和习惯,熟练进行硬件编程;能完全看懂各种原版器件数据手册,能独立编写软件流程图。
5、熟悉Linux、安卓等嵌入式系统,具有系统裁剪能力,熟悉I2C、SPI、RS232、RS484、CAN、USB、RS485、RS232总线及相关协议。
6、熟练Freescale、MTK、TI、SAMSUNG等主流ARM器件,内部架构,熟悉芯片内部各个模块的架构和控制方式。掌握常见的开发工具(仿真、电路设计)使用,如Keil、Protel、Mentor等。掌握常用调试测试仪表和工具,能熟练进行测试调试和分析排故。
十五、材料研发工程师 岗位职责:
1、开展基于金属纳米线的透明导电薄膜的制备及表征等相关工作;
2、基于透明导电材料的应用开发。
岗位要求:
1、材料、物理类专业硕士及以上学历;
2、动手能力强,对材料制备、合成、表征有一定基础,有材料合成及复合背景优先;
3、学习能力强,具有文献查阅、撰写文档、专利、论文的能力;
4、能熟练操作实验室仪器设备,并进行日常的维护工作。
第五篇:二氧化碳驱油技术研究现状与发展趋势
油藏工程新进展论文
班级:油工08-4 学号:080201140407 姓名:丁艳雪
二氧化碳驱油技术研究现状与发展趋势
随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业 发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而 廉价的采油新技术一直是专家们不断探索的问题。
针对目前世界上大部分油田采用注水开发面临着需要进一步提高采收率和水资源缺乏的问题国外近年来大力开展了二氧化碳驱油提高采收率(EOR)技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率
(一)二氧化碳驱油技术机理
1、降粘作用
二氧化碳与原油有很好的互溶性,能显著降低原油粘度,可降低到原粘度的1/10左右。原油初始粘度越高,降低后的粘度差越大,粘度降低后原油流动能力增大,提高原油产量。
2、改善原油与水的流度比
二氧化碳溶于原油和水,使其碳酸化。原油碳酸化后,其粘度随之降低,同时也降低了水的流度,改善了油与水流度比,扩大了波及体积。
3、膨胀作用
二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。
4、萃取和汽化原油中的轻烃
在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。
5、混相效应
混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能形成二氧化碳和轻质烃混合的油带。油带移动是最有效的驱油过程,可使采收率达到90%以上。
6、分子扩散作用
多数情况下,二氧化碳是通过分子的缓慢扩散作用溶于原油。分子的扩散过程很缓慢,特别是水相将油相与二氧化碳气相隔开时,水相阻碍了二氧化碳分子向油相中的扩散并且完全抑制了轻质烃从油相释放到二氧化碳中,因此,必须有足够的时间,使二氧化碳分子充分扩散到油相中。
7、降低界面张力
二氧化碳混相驱中,二氧化碳抽提原油中的轻质组分或使其汽化,从而降低界面张力。
8、溶解气驱作用
大量的二氧化碳溶于原油中具有溶解气驱的作用。降压采油机理与溶解气驱相似,随着压力下降,二氧化碳从液体中逸出,液体内产生气体驱动力,提高了驱油效果。另外,一些二氧化碳驱油后,占据了一定的孔隙空间,成为束缚气,也可使原油增产。
9、提高渗透率作用
二氧化碳溶于原油和水,使其碳酸化。碳酸水与油藏的碳酸盐反应,生成碳酸氢盐。碳酸氢盐易溶于水,导致碳酸盐尤其是井筒周围的大量水和二氧化碳通过的碳酸岩渗透率提高,使地层渗透率得以改善,上述作用可使砂岩渗透率提高5%-15%,同时二氧化碳还有利于抑制粘土膨胀。另外,二氧化碳-水混合物由于酸化作用可以在一定程度上解出无机垢堵塞、疏通油流通道、恢复单井产能。
(二)二氧化碳驱油技术的几种方式
1、连续注二氧化碳气体
2、注碳酸水(ORCO)
2、二氧化碳气体或液体段塞后紧跟着注水
4、二氧化碳气体或液体段塞后交替注水和二氧化碳气体(WAG)
5、同时注入二氧化碳气体和水。
(三)二氧化碳驱油技术优点
1、在能源紧缺和节能减排的背景下,二氧化碳驱油有着非常广阔的推广利用前景,有关部门应适时出台相应的政策扶持措施,加快这一技术的推广应用。
2、二氧化碳驱油不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。根据油田地质情况的不同,每增产1 t原油约需1~4.2t二氧化碳,可增产油田总
储量约l0%的原油。
3、适合二氧化碳驱油的油藏储量就非常可观
4、二氧化碳驱油具有适用范围大、驱油成本低、采油率提高显著等优点
5、能满足油田开发需求,还能解决二氧化碳的封存问题,保护大气环境。
(四)二氧化碳驱油的油藏条件
根据大量的矿场试验,总结出适应二氧化碳驱油油藏的基本条件是:油层的岩性可以是灰岩、白云岩或砂岩等,二氧化碳溶于水后形成的碳酸可以溶蚀钙盐等,提高底层渗透率;二氧化碳你驱油油藏一般埋深在600-3500米,油层温度一般低于120℃,油层厚度大于3米;油层的破裂压力大于要求的注入压力,防止地层的压裂,影响驱油效果;油层具有大的空隙体积以便与二氧化碳接触,渗透率一般大于5个毫达西.(五)二氧化碳驱油效果
大庆油田从1985年开始,为改善厚油层开发效果,提高采收率,在三个区块开展了小规模矿场试验。注气采取水气交替的注入方式进行,明显改善了开发效果,根据对采出气采集气样分析结果及生产井反映动态变化,试验区内80%~90% 左右的生产井已见到了注入的二氧化碳气体。室内试验结果表明,在油层条件下,二氧化碳可使萨南原油粘度下降35%,使原油体积膨胀3.2%。
1、CO2注入后,原油粘度下降,原油轻质组份增加.分子量减小。原油这一性质的变化,反映了CO2对原油轻组份的萃取及使原油粘度下降的机理。
2、试验区内含水稳中有降,产油量增加,延长了油田的开采期,较大幅度地提高了原油采收率。试验区日产油量由注气前12t上升到26t,水油比由40降到17,日产原油为注气前的2.2倍,日增原油l4t。中心井注气前含水92.2%,注气后(1994年7月)最低降到84.4%,下降7.4个百分点。产液量由每天的55t上升到63t,日产原油由4.3t上升到9.6t,水油比由11.5降到5.6。日产原油为注气前的2.2倍。
3、调整了生产井的产出剖面。注气前(1994年4月),全井有效厚度7.1m,只有底部2.8m有效厚度产液69t,含水92.5%。注气后(1 994年1月)较注气前产液韶面发生了很大变化,注气前上部有4.3m油层不产液.注气后产液量66.2t.占垒井产液量的85.3%,可见注气后产液剖面得到显著改善。
4、CO2突破后,产出债由弱碱性变为弱酸性,钙镁离子明显增加。钙离子增加到6~lO倍,镁离子增加到5~9倍,钙、镁离子增加,说明二氧化碳驱有垢质产生。
5、生产井产出液中氯离子和矿化度增加。注气后较注气前氯离子增加到39%,矿化度增加到82%。这说明二氧化碳对水驱剩余油具有驱替作用,井可增加新的出油部位,提高了采收率。
(六)二氧化碳驱油国内外研究现状
1、国外研究现状
前苏联最早从1953年开始对注二氧化碳提高采收率技术进行研究。1967年前苏联石油科学研究院在图依马津油田的亚历山德罗夫区块进行了工业性基础试验。尽管这些油藏的地质条件不同,但都取得了好的应用效果。
而美国是二氧化碳驱发展最快的国家,自20世纪80年代以来,美国的二氧化碳驱项目不断增加,已成为继蒸气驱之后的第二大提高采收率技术。美国目前 正在实施的混二氧化碳相驱项目有64个。大部分油田驱替方案中,注入的体积二氧化碳约占烃类孔隙体积的30%,提高采收率的幅度为7%-12%。
近年来,加拿大和土耳其对二氧化碳驱开采重油进行了大量的实验研究。土耳其大规模的采用驱替二氧化碳重油,并获得了很大的成功。加拿大也从实验上证实二氧化碳一旦溶解在原油中就可使原油粘度降低,并且可以把粘度降低到用蒸气驱替的水平。
2、国内研究现状
我国东部主要产油区二氧化碳气源较少,但注二氧化碳提高采收率技术的研究和现场先导试验却一直没有停止。注二氧化碳技术在油田的应用越来越多,已在江苏、中原、大庆、胜利等油田进行了现场试验。
我国对二氧化碳驱油技术也进行了大量的前期研究,例如,大庆油田利用炼油厂加氢车间的副产品——高纯度二氧化碳 96% 进行二氧化碳非混相驱矿场试验。虽然该矿场试验由于油藏的非均质性导致的气窜影响了波及效率, 但总体上还是取得了降低含水率、提高原油采收率的效果。针对胜利油田特超稠油油藏黏度大、埋藏深 , 从 2005 年起胜利采油院与胜利石油开发中心合作 , 在郑
411、T826等特超稠油区开始二氧化碳辅助蒸汽吞吐的试验 , 首次把二氧化碳和水蒸气结合起来应用于热力采油 ,并据此展开更深入的理论研究 ,不断提高热采配套工艺技术水平。
2009年5月22日,在大庆油田公司榆树林油田树101二氧化碳驱油区块和勘探开发研究院开发研究二室获悉,二氧化碳驱油技术攻关试验在这个油田外围呈现良好发展态势。今年,这个油田已将二氧化碳驱油技术纳入战略储备技术,扩大二氧化碳产能建设和驱油试验区规模,并逐步将试验区从外围油田向老区油田延伸。截至5月26日,大庆油田二氧化碳驱油技术攻关试验累计增油已超过4000吨。
(七)二氧化碳驱油过程中容易遇到的一些问题
1、温度与压力条件的变化导致CO2浓度降低,使蜡和沥青质从原油中沉淀析出
2、油井CO,气窜
3、油井与油田设备的腐蚀
4、CO2的有效输送
5、工艺成本高
6、油田附近没有CO2气源或者供应量不足
(八)二氧化碳驱油技术的发展前景 二氧化碳驱油是一项成熟的采油技术。据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。美国是二氧化碳驱油项目开展最多的国家,每年注入油藏的二氧化碳量约为2000万~3000万吨,其中300万吨来自煤气化厂和化肥厂的废气。
据“中国陆上已开发油田提高采收率第二次潜力评价及发展战略研究”结果,二氧化碳在我国石油开采中有着巨大的应用潜力。我国现已探明的63.2亿吨低渗透油藏原油储量,尤其是其中50%左右尚未动用的储量,运用二氧化碳驱比水驱具有更明显的技术优势。
可以预测,随着技术的发展完善和应用范围的不断扩大,二氧化碳将成为我国改善油田开发效果、提高原油采收率的重要资源。
(九)结论与建议
从大庆油田几年的现场试验研究情况看,二氧化碳驱油的工艺技术是可行的,见到了一定的驱油效果。但要将二氧化碳驱大面积应用于油田生产,除了要解决大型压缩机等地面设备和井下管柱工具防腐问题外,还要考虑当地是否有天然的二氧化碳气源。在抽田开发过程中,结合油田实际,综合评价二氧化碳驱、聚合物驱、三元混相驱、天然气驱、蒸汽吞吐等三采措施,选择最适宜本油田开发生产的驱油技术。
参考文献:
[1] CO2驱提高采收率国内外发展应用情况/陈志超,李刚,尚小东,尹艳梅
[2] CO2驱油技术在大庆油田的应用/王雅如,高树生,赵玉昆
[3] CO2驱油提高采收率技术/文乔
[4] 大港油田开展二氧化碳驱油的前景分析/王天明,王春艳,樊万鹏
[5] 大庆油田二氧化碳驱油技术取得进展/王志田,陈庆
[6] 二氧化碳驱/金佩强摘译自 《SPE 23564》
[7] 二氧化碳驱油/中外石油科技
[8] 科技动态/第10期 第109页
[9] 石油工程科技/第33页
[10] 考虑传质扩散作用的CO2驱油数学模型及其影响因素研究/安杰 中国石油大学