纳米薄膜材料的制备方法

时间:2019-05-13 08:22:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《纳米薄膜材料的制备方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《纳米薄膜材料的制备方法》。

第一篇:纳米薄膜材料的制备方法

纳米薄膜材料的制备方法

摘 要 纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。

关键词

纳米薄膜;薄膜制备;微结构;性能 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。

事实上, 纳米材料并非新奇之物, 早在 1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约 50 年代,西德的 Kanzig 观察到了 BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的 G.A.Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的 Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米 能级附近的平均能级间隔 > kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的 H.Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为 1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。

纳米薄膜的分类

纳米薄膜具有纳米结构的特殊性质, 目前可以 分为两类:(1)含有纳米颗粒与原子团簇

基质薄 膜;(2)纳米尺寸厚度的薄膜, 其厚度接近电子自由 程和 Denye 长度, 可以利用其显著的量子特性和统 计特性组装成新型功能器件。例如, 镶嵌有原子团 的功能薄膜会在基质中呈现出调制掺杂效应, 该结 构相当于大原子超原子膜材料具有三维特征;纳米厚度的信息存贮薄膜具有超高密度功能, 这类 集成器件具有惊人的信息处理能力;纳米磁性多层 膜具有典型的周期性调制结构, 导致磁性材料的饱 和磁化强度的减小或增强。对这 些问题的系统研究 具有重要的理论和应用意义。

纳米薄膜是一类具有广泛应用前景的新材料, 按用途可以分为两大类,即纳米功能薄膜和纳米结 构薄膜。前者主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。后者主要是通过纳米粒子复合, 提 高材料在机械方面的性能。由于纳米粒子的组成、性能、工艺条件等参量的变化都对复合薄膜的特性 有显著影响, 因此可以在较多自由度的情况人为地 控制纳米复合薄膜的特性, 获得满足需要的材料。纳米多层膜指由一种或几种金属或合金交替沉 积而形成的组分或结构交替变化的合金薄膜材料, 且各层金属或合金厚度均为纳米级, 它也属于纳米 复合薄膜材料。多层膜的主要参数为调制波长, 指的是多层膜中相邻两层金属或合金的厚度之和。当调制波长

比各层薄膜单晶的晶格常数大几倍 或更大时, 可称这种多层膜结构为 超晶格 薄膜。组成薄膜的纳米材料可以是金属、半导体、绝缘体、有机高分子等材料, 因此可以有许多种组合方式, 如 金属半导体、金属绝缘体、半导体绝缘体、半导体 高分子材料等, 而每一种组合都可衍生出众多类型 的复合薄膜。

纳米薄膜的制备方法

纳米薄膜的制备方法按原理可分为物理方法和 化学方法两大类。粒子束溅射沉积和磁空溅射沉 积,以及新近出现的低能团簇束沉积法都属于物理 方法;化学气相沉积(CVD)、溶胶-凝胶(Sol Gel)法 和电沉积法属于化学方法。1 离子束溅射沉积

使用这种方法制备纳米薄膜是在多功能离子束 辅助沉积装置上 完成。该装置 的本底真空度 为 0 2MPa, 工作气压为 7MPa。沉积陶瓷材料可以通过 使用 3 2KeV 100mA 的 Ar + 离子束溅射相应的靶材 沉积得到, 而沉积聚四氟乙烯材料需要使用较小的 束流和束压(1 5KeV 30mA)。沉积陶瓷材料时的速 率为 6nm min, 沉积金属和聚四氟乙烯材料时的速率 为 12nm min[ 7]。磁控溅射沉积

磁控溅射沉积法制备薄膜材料是在磁控溅射仪 上实现的, 其真空室中有三个阴极靶(一个直流阴 极, 两个射频阴极), 三个阴极可分别控制。首先将 溅射材料安装在射频阴极上, 通过基片架转动,基片 轮流在两个射频靶前接受溅射原子, 控制基片在各 靶前的时间, 即可控制多层膜的调制波长。同时在 真空室内通入一定压力的气体, 可以作为保护气氛, 或与溅射金属原子反应生成新的化合物,沉积到基 片上[ 8-10]。此外在基片高速旋转的条件下, 还可制备近似均匀的复合薄膜[11]。磁控溅射法具有镀膜 速率易于控制, 稳定性好, 溅射材料不受限制等优 点。低能团簇束沉积法

低能团簇束沉积方法是新近出现的一种纳米薄 膜制备技术。该技术首先将所沉积材料激发成原子 状态,以 Ar、He作为载气使之形成团簇, 同时采用电 子束使团簇离化,利用质谱仪进行分离, 从而控制一 定质量、一定能量的团簇沉积而形成薄膜。在这种 条件下沉 积的团簇在撞击表面时并不破碎, 而是近乎随机分布;当团簇的平均尺寸足够大, 则其扩展能 力受到限制,沉积薄膜的纳米结构对团簇尺寸具有 很好的记忆特性[12]。电沉积法

电沉积法可以制得用喷射法不能制得的复杂形 状,并且由于沉积温度较低, 可以使组分之间的扩散 程度降到最低[13]。匈牙利的 Eniko TothKadar 利用交流脉冲电源在 阴极镀制纳米晶 Ni 膜, 试样制备与普通电镀相同, 电镀时电流保持不变, idep = 20A dm-2 , 脉冲电流通 电时间 t on ,断电时间 to f f 在 0 001, 0 01, 0 1, 1, 10s 之 间变化[14]。此外用电沉积法在 AISI52100 钢基体上制得铜-镍多层膜, 试样预先淬硬到 HRC62 左右, 然后抛 光清洗, 进行电沉积, 镀铜时电压 u = 1600mV, i = 0 881mA cm-2 , 镀镍时电压 u = 600mA, i = 22 02mA cm-2[15]。胶体化学法

采用溶胶-凝胶法制备纳米薄膜,首先用化学 试剂制备所需的均匀稳定水溶胶, 然后将溶胶滴到 清洁的基体上,在匀胶机上匀胶, 或将溶胶表面的陈 化膜转移到基体上, 再将薄膜放入烘箱内烘烤或在 自然条件下干燥, 制得所需得薄膜。根据制备要求 的不同, 配制不同的溶胶, 即可制得满足要求的薄 膜。用溶胶-凝胶法制备了纳米微孔 SiO2 薄膜[16] 和SnO2 纳米粒子膜[17]。此外, 还有用这种方法制 备 化学气相沉积法 在电容式耦合等离子体化学气相沉积(PCVD)系统上, 用高氢稀释硅烷和氮气为反应气氛制备纳 米硅氮(Nc SiNx :H)薄膜。其试验条件为: 电极间距 3 2cm,电极半径 5cm。典型的沉积条件为: 衬底温 度 320 , 反应室压力为 100Pa, 射频功率为 70W SiH4 H2 的气体流量比为 0 03, N2 SiH4 的气体流量 比为 1~ 10[19]。此外,还有用化学沉积法制备 Fe P 膜[20] , 射频 溅射法制备 a Fe Nd2 Fe4 B 多层膜[21] , 热化学气相法 制备 SiC Si N 膜的报道。

纳米粒子膜的结构

中科院长春化学研究所研究了用胶体化学法制 备的 SnO2 纳米粒子膜的结构, 然后将胶体表面的陈 化膜转移出来, 发现新鲜的膜体表面均匀,但经过一 段时间以后, 出现小的胶体粒子畴, 并逐渐增多变 大。随着时间的增加, 畴间距缩小,形成大块膜。薄 膜的致密程度以及晶型与转移膜的悬挂状态和干燥 时间有一定的联系[ 17]。

纳米多层膜的结构

纳米多层膜中各成分都有接近化学计量比的成 分构成, 从 X 射线衍射谱中可以看出, 所有金属相 及大多数陶瓷相都为多晶结构, 并且谱峰有一定程 度的宽化, 表明晶粒是相当细小的,粗略的估算在纳 米数量级, 与子层的厚度相当。部分相呈非晶结构, 但在非晶基础上也有局部的晶化特征出现。通过观察, 可以看到多层膜的多层结构,一般多 层膜的结构界面平直清晰, 看不到明显的界面非晶 层, 也没有明显的成分混合区存在。此外, 美国伊利诺斯大学的科研人员成功地合 成了以蘑菇形状的高分子聚集体微结构单元, 在自 组 装成纳米结构的超分子多层膜[ 22]。

力学性能

纳米薄膜由于其组成的特殊性, 因此其性能也 有一些不同于常规材料的特殊性, 尤其是超模量、超 硬度效应成为近年来薄膜研究的热点。对于这些特 殊现象在材料学理论范围内提出了一些比较合理的 解释。其中有 Koehler 早期提出的高强度固体的设 计理论[23] , 以及后来的量子电子效应、界面应变效 应、界面应力效应[24, 25] 等都不同程度的解释了一些 实验现象。现在就纳米薄膜材料的力学性能研究较 多的有多层膜硬度、韧性、耐磨性等。

硬度 纳米多层膜的硬度与材料系统的组 分,各组分的相对含量, 薄膜的调制波长有着密切的 关系。纳米多层膜的硬度对于材料系统的成分有比较 强烈的依赖性,在某些系统中出现了超硬度效应, 如 在TiN Pt 和Ti C Fe中,尤其是在TiC Fe 系统中,当单 层膜厚分别为 tTiC = 8nm 和 tFe= 6nm 时,多层膜的硬 度可达到 42GPa,远远超过其硬质成分 TiC 的硬度;而在某些系统中则没有这一现象出现, 如在 TiC Cu 和TiC Al 中,并且十分明显的是在不同的材料系统 中,其硬度值有很大的差异, 如TiC 聚四氟乙烯的硬 度比TiC 低很多, 大约只有 8GPa左右[7]。影响材料硬度另一个因素是组分材料的相对含 量。机械性能较好的薄膜材料一般由硬质相(如陶 瓷材料)和韧性相(如金属材料)共同构成。因此如 果不考虑纳米效应的影响,如果硬质相含量较高, 则 薄膜材料的硬度较高, 并且与相同材料组成的近似 混合薄膜相比,硬度均有所提高。对于纳米多层膜的强化机理, 多数观 点认为其 硬度值与调制波长的关系近似的遵循 Hall Petch 关系式[26] : = 0 +(a0)n(2)式中

为多层膜的调制波长。按照该关系式, 硬度 值随调制波长的增大而减小。根据位错机制, 材 料的硬度随晶粒度的减小而增大。在纳米多层膜 中,界面的含量是相当高的, 而界面对位错移动等材 料变形机制有着直接影响, 可以将层间界面的作用 类似于晶界的作用, 因此多层膜的硬度随调制波长的减小而增大。实验中观察到在TiC Cu、TiC AIN 等系统中硬度值随调制波长的变化类似遵循 Hall Petch关系式[ 27] , 但是在 SiC W[ 11]、TiN Pt [ 7] 中的 情况要复杂一些,硬度与调制波长的关系并非单 调地上升或下降,而是在某一调制波长

存在一个 硬度最高值。

韧性 多层膜结构可以提高材料的韧性, 其 增韧机制主要是裂纹尖端钝化、裂纹分支、层片拔 出、以及沿界面的界面开裂等, 在纳米多层膜中也存 在类似的增韧机制。影响韧性的因素有组分材料的相对含量及调制 波长。在金属陶瓷组成的多层膜中, 可以把金属作 为韧性相,陶瓷为脆性相, 实验中发现在TiC Fe、TiC Al、TiC W 多层膜系[7] 中, 当金属含量较低时, 韧性 基本上随金属相的增加而上升, 但是在上升到一定 程度时反而下降。对于这种现象可以用界面作用和单层材料的塑 性加以粗略的解释。当调制波长

不是很小时, 多 层膜中的子层材料基本保持其本征的材料特点, 金 属层仍然具有较好的塑性变形能力, 减小调制波长

相当于增加界面含量,有助于裂纹分支的扩展, 增 加材料的韧性。当调制波长

很小时,子层材料的 结构可能会发生一些变化, 金属层的塑性降低,同时 由于子 层的厚度太薄, 材料的成分变化梯度减小, 裂 纹穿越不同叠层时很难发生转移和分裂,因上韧性 反而降低。4 1 3 耐磨性 对于纳米薄膜的耐磨性, 现在进行 的研究还较少, 但是从现有的研究看来,合理的搭配 材料可以获得较好的耐磨性。如在 52100 轴承钢基 体上沉积不同调制波长的铜膜和镍膜[15] , 实验证明 多层膜的调制波长越小, 使其磨损明显变大的临界 载荷越大, 即铜-镍多层膜的调制波长越小,其磨损 抗力越大。对于这种现象没有确切的理论解释, 可以用晶 粒内部、晶粒界面和纳米多膜的邻层界面上的位错 滑移障碍比传统材料的多, 滑移阻力比传统材料的 大来解释。从结构上看, 多层膜的晶粒小,原子排列的晶格 缺陷的可能性大, 晶粒内的晶格点阵畸变和晶格缺 陷的增多, 使晶粒内部的位错滑移障碍增加;晶界长 度也比传统晶粒的晶界长的多, 使晶界上的位错滑 移障碍增加;此外, 多层膜相邻界面结构也非常复 杂, 不同材料的位错能的差异,导致界面上的位错滑 移阻力增大。因此使纳米多层膜发生塑性变形的流 变应力增加, 并且这种作用随着调制波长的减小而 增强。

纳米薄膜在许多领域内都有着广泛的应用前 景。利用新的物理化学性质、新原理、新方法设计纳 米结构性器件和纳米复合传统材料改性正孕育着新 的突破。功能性的薄膜材料一直是人们研究的热 点,例如 H.Matsuda等人制备的 Fe P 纳米薄膜具有 优良的磁性能[ 20];纳米硅薄膜(nc Si: H)是一种新型 低维人工半导体材料[34];Eniko TothKadar 等人用脉 冲电沉积法制备的 Ni 纳米晶薄膜,具有良好的电传 导性[14];杨仕清等人研究了纳米双相交换耦合多层膜 a Fe Nd2 Fe4 B永磁体的磁性能[21];利用巨磁电阻 效应制成的读出磁头可显著提高磁盘的存储密度;利用巨磁电阻效应制作磁阻式传感器可大大提高灵 敏度。

参 考 文 献

1.张立德.纳米材料研究的新进展及在 21 世纪的战略 地位, 中国粉体技术[ J].2000, 6(1): 1~ 5 2.李戈扬, 施晓蓉, 张流强, 等.TiN AIN纳米多层膜的 制备及力学性能.[ J].上海交通大学学报, 1999, 33(2): 159 3.纳米薄膜材料的研究进展 邱成军1, 2 , 曹茂盛2, 3 , 朱 静3 , 杨慧静2(1 黑龙江大学电子工程学院;2 哈尔滨工程大学材料系)

第二篇:块状纳米材料的制备方法总结

块状纳米材料的制备方法总结

块体纳米材料是晶粒尺寸小于100 NM 的多晶体, 其晶粒细小, 晶界原子所占的体积比很大, 具有巨大的颗粒界面, 原子的扩散系数很大等独特的结构特征, 其表现出一系列奇异的力学及理化性能。

1、惰性气体凝聚原位加压成型法

其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成型系统组成1 这种制备方法是在低压的氩、氦等惰性气体中加热金属, 使其蒸发后形成超微粒(< 1 000 NM)或纳米微粒[ 1] 1 由惰性气体蒸发制备的纳米金属或合金微粒, 在真空中由四氟乙烯刮刀从冷阱上刮下, 经低压压实装置轻度压实后,再在高压下原位加压, 压制成块状试样1 实验装置如图1所示。其优点是: 纳米颗粒具有清洁的表面,很少团聚成粗团聚体, 块体纯度高, 相对密度高, 适用范围广[ 2 ],但工艺设备复杂, 生产率低, 特别是制备的纳米材料中存在大量孔隙, 致密度仅为75% ~90%。

2、高能机械研磨法(MA)利用粉末粒子与高能球之间相互碰撞、挤压, 反复熔结、断裂、再熔结使晶粒不断细化,直至达到纳米尺寸1 纳米粉通过热挤压、热等静压等技术加压后, 制得块状纳米材料。该法成本低、产量大、工艺简单, 在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力, 可以制备纯金属纳米块体材料、不互溶体系纳米合金、纳米金属间化合物及纳米尺度的金属-陶瓷粉复合材料等1 但其研磨过程中易产生杂质、污染、氧化, 很难得到洁净的纳米晶体界面。

3、大塑性变形方法(SPD)由于大塑性变形具有将粗晶金属的晶粒细化到纳米量级的巨大潜力, 已引起人们的极大关注。块纳米金属和合金最快捷的生产方法之一便是大塑性变形加工。高能球磨是在机械力的作用下, 粉末颗粒被反复地破碎、焊合, 将粗大晶粒细化到微米或纳米量级的一种有效手段。但是与高能球磨和非晶晶化法制备纳米材料的不同之处在于, 大塑性变形是通过剧烈的塑性变形, 使粗大晶粒破碎、细化, 从而直接获得块体纳米材料。近年来出现了一些大塑性变形方法, 如等径角挤压(Equal channel angular pressing, ECAP)、高压扭转(High pressure and torsion, HPT)、叠轧合技术(Accumulative roll bonding, ARB)、反复折皱一压直法(Repetitive corrugation and straightening.RCS)等。在发展多种塑性变形方法的基础上, 已成功地制备了晶粒尺寸为20~200nm 的纯Fe、Fe-1.2C 钢、Fe-C-Mn-Si—V 低合金钢、A1-Li—Zr、Mg—Mn-Ce 等合金的块体纳米晶材料。

4、非晶晶化法

该法通过控制非晶态固体的晶化过程, 可以使晶化的产物为纳米尺寸的晶粒。该法主要包括两部分: 获得非晶态固体和将非晶固体晶化。非晶态固体可通过熔体激冷、高速直流溅射、固态反应法等技术制备, 最常用的是单辊或双辊旋淬法。但以上方法只能获得非晶粉末、丝及条带等低维材料, 因而还需采用热压、高压烧结方法合成块状样品。非晶态合金的制备技术经过几十年的发展已非常成熟, 可以成功地制备出块状非晶态合金。由于非晶态合金在热力学上是不稳定的, 在受热或辐射等条件下会出现晶化现象, 即非晶态向晶态转变。晶化通常采用等温退火方法,近年来还发展了分级退火、激波诱导等方法。此法在纳米软磁材料的制备方面应用最为广泛。目前利用该法已制备出Ni、Fe、Co、Pt 基等多种合金系列的纳米晶体, 也可制备出金属间化合物和单质半导体纳米晶材料, 并已发展到实用阶段。

5、粉末冶金法

粉末冶金法是把纳米粉压实成实体, 然后放到热压炉中烧结。与常规粉体相比, 由于纳米粉具有高的表面激活能, 因而其烧结温度低得多, 且粒子长大速度也快1 由于纳米粉尺寸小, 表面能高, 压制成块体后, 其高的表面能成为原子运动的驱动力, 有利于界面中的空洞收缩, 从而在较低的烧结温度下能达到致密化的目的。

6、电解沉积法

电解沉积法是指在溶液中带正电的金属离子,吸附到带负电的纳米颗粒表面, 然后在电动力的作用下移至阴极, 金属离子还原成原子, 并与所俘获的纳米颗粒一起占据阴极金属或合金表面的位置, 而形成涂层, 逐渐形成薄膜纳米材料1 利用此技术, 控制适当的工艺参数可以获得纳米材料[ 3 ]。日本东北大学材料研究所采用Sic-l CH-H 系统, 在硅/ 碳比为0~ 2.8 和沉积温度为1 400~ 2 000 K 的条件下,制备出Sic-C 纳米复合材料, 其最佳沉积温度为1 600 K1 该法特点是工艺设备简单, 生产效率高,但沉积厚度薄。

第三篇:纳米薄膜小论文

纳米技术在薄膜中的应用与发展

摘要:近年来纳米技术的发展研究是一个热烈的话题,受到了广泛的关注。而纳米薄膜材料是一种新型材料,由于其特殊的结构特点,时期作为功能材料和结构材料都具有良好的发展前景。本文简单介绍了纳米薄膜材料的性能、制备方法,应用领域等几个方面,为初步认识和了解纳米薄膜材料有推动作用。

关键字:纳米技术,薄膜,材料

纳米技术在今天已经不是个陌生的话题,所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项技术。这是21世纪最有竞争力的技术之一。科学家们在研究微观粒子结构与性能过程中,发现在纳米尺度下的原子或分子,可以表现出许多新的特性,而利用这些特性制造具有特定功能的设备与仪器,能够在改善人们的日常生活中起到相当显著的作用。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。而我所研究的是纳米技术在薄膜中的部分应用与其今后发展。新型薄膜材料对当代高新技术起着重要的作用,是国际上科学技术研究的热门学科之一。

1.纳米薄膜材料概述

纳米薄膜是一类具有广泛应用前景的新材料, 按用途可以分为两大类,即纳米功能薄膜和纳米结构薄膜。前者主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。后者主要是通过纳米粒子复合, 提高材料在机械方面的性能。由于纳米粒子的组成、性能、工艺条件等参量的变化都对薄膜的特性有显著影响, 因此可以在较多自由度的情况人为地 控制纳米复合薄膜的特性, 获得满足需要的材料。纳米多层膜指由一种或几种金属或合金交替沉积而形成的组分或结构交替变化的合金薄膜材料, 且各层金属或合金厚度均为纳米级, 它也属于纳米薄膜材料。多层膜的主要参数为调制波长,指的是多层膜中相邻两层金属或合金的厚度之和。当调制波长比各层薄膜单晶的晶格常数大几倍或更大时,可称这种多层膜结构为超晶格薄膜。组成复合薄膜的纳米粒子可以是金属、半导体、绝缘体、有机高分子等材料,而复合薄膜的基体材料可以是不同于纳米粒子的任何材料。人们采用各种物理和化学方法先后制备了一系列金属/绝缘体、半导体/绝缘体、金属/半导体、金属/高分子、半导体/高分子等纳米复合薄膜。特别是硅系纳米复合薄膜材料得到了深入的研究,人们利用热蒸发、溅射、等离子体气相沉积等各种方法制备了Si/SiOx、Si/a-Si:H、Si/SiNx、Si/SiC等纳米镶嵌复合薄膜。尽管目前对其机制不十分清楚,却有大量实验现象发现在此类纳米复合薄膜中观察到了强的从红外到紫外的可见光发射。由于这一类薄膜稳定性大大高于多孔硅,工艺上又可与集成电路兼容,因而被期待作为新型的光电材料应用于大规模光电集成电路。

由于纳米薄膜的纳米相粒子的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效 应等使得它们的光学性能、电学性能、力学性能、催化性能、生物性能等方面呈现出常规材料不具备的特性。因此,纳米薄膜在光电技术、生物技术、能源技术等各个领域都有广泛的应用前景。现以纳米薄膜材料在润滑方面的作用为例介绍它们的特性及其应用。

2.纳米薄膜的制备方法

纳米薄膜的制备方法按原理可分为物理方法和化学方法两大类。粒子束溅射沉积和磁空溅射沉积,以及新近出现的低能团簇束沉积法都属于物理方法;化学气相沉积(VCD)、溶胶-凝胶(Sol-Gel)法和电沉积法属于化学方法。2.1离子束溅射沉积

使用这种方法制备纳米薄膜是在多功能离子束辅助沉积装置上完成。该装置的本底真空度为 0.2MPa, 工作气压为 7MPa。沉积陶瓷材料可以通过使用3.2KeV/100mA 的 Ar+ 离子束溅射相应的靶材沉积得到, 而沉积聚四氟乙烯材料需要使用较小的束流和束压(15KeV/30mA)。沉积陶瓷材料时的速率为6nm/min, 沉积金属和聚四氟乙烯材料时的速率为 12nm/min。2.2磁控溅射沉积

磁控溅射沉积法制备薄膜材料是在磁控溅射仪上实现的, 其真空室中有三个阴极靶(一个直流阴极, 两个射频阴极), 三个阴极可分别控制。首先将溅射材料安装在射频阴极上, 通过基片架转动, 基片轮流在两个射频靶前接受溅射原子, 控制基片在各靶前的时间, 即可控制多层膜的调制波长。同时在真空室内通入一定压力的气体, 可以作为保护气氛, 或与溅射金属原子反应生成新的化合物, 沉积到基片上。此外在基片高速旋转的条件下, 还可制备近似均匀的复合薄膜。磁控溅射法具有镀膜速率易于控制, 稳定性好, 溅射材料不受限制等优点。2.3低能团簇束沉积法

低能团簇束沉积方法是新近出现的一种纳米薄膜制备技术。该技术首先将所沉积材料激发成原子状态, 以 Ar、He 作为载气使之形成团簇, 同时采用电子束使团簇离化, 利用质谱仪进行分离, 从而控制一定质量、一定能量的团簇沉积而形成薄膜。在这种条件下沉积的团簇在撞击表面时并不破碎, 而是近乎随机分布;当团簇的平均尺寸足够大, 则其扩展能力受到限制, 沉积薄膜的纳米结构对团簇尺寸具有很好的记忆特性。2.4电沉积法

电沉积法可以制得用喷射法不能制得的复杂形状,并且由于沉积温度较低, 可以使组分之间的扩散程度降到最低。匈牙利的Eniko TothKadar 利用交流脉冲电源在阴极镀制纳米晶 Ni膜, 试样制备与普通电镀相同, 电镀时电流保持不变, idep = 20Adm-2, 脉冲电流通电时间 ton ,断电时间 toff在 0.001,0.01,0.1, 1, 10s 之间变化。

此外用电沉积法在 AISI52100 钢基体上制得铜-镍多层膜, 试样预先淬硬到 HRC62 左右, 然后抛光清洗,进行电沉积, 镀铜时电压 u = 1600mV, i = 0.881mA cm-2 , 镀镍时电压 u = 600mA, i = 22.02mA cm-2。2.5胶体化学法

采用溶胶-凝胶法制备纳米薄膜,首先用化学试剂制备所需的均匀稳定水溶胶, 然后将溶胶滴到清洁的基体上,在匀胶机上匀胶, 或将溶胶表面的陈化膜转移到基体上, 再将薄膜放入烘箱内烘烤或在自然条件下干燥, 制得所需得薄膜。根据制备要求的不同, 配制不同的溶胶, 即可制得满足要求的薄膜。用溶胶-凝胶法制备了纳米微孔 SiO2薄膜和 SnO2纳米粒子膜。

此外,还有用这种方法制备 TiO2/SnO2 超颗粒及其复合 LB(Langmuir-Blodgett)膜、SiC/AIN 膜、ZnS/Si 膜、CuO/SiO2 膜的报道。2.6化学气相沉积法

在电容式耦合等离子体化学气相沉积(PCVD)系统上, 用高氢稀释硅烷和氮气为反应气氛制备纳米硅氮(Nc-SiNx:H)薄膜。其试验条件为: 电极间距 3.2cm,电极半径 5cm。典型的沉积条件为: 衬底温度 320℃, 反应室压力为 100Pa, 射频功率为70W SiH4/H2的气体流量比为 0.03, N2/SiH4的气体流量比为 1~10。

此外,还有用化学沉积法制备 Fe-P 膜, 射频溅射法制备 a-Fe/Nd2Fe4B 多层膜, 热化学气相法制备 SiC/Si3N4膜的报道。

3.纳米薄膜的应用领域

3.1纳米光学薄膜

利用纳米薄膜吸收光谱的蓝移与红移特性,人们已制造出了各种各样的紫外吸收薄膜和红外反射薄膜,并在日常生产、生活中取得应用。如在平板玻璃的两面镀制的Ti02纳米薄膜,在紫外线作用下,该薄膜可分解沉积在玻璃上的有机污物,氧化室内有害气体,杀灭空气中的有害细菌和病毒;在眼镜上镀制的TiO2 纳米粒子树脂膜或Fe2O3纳米微粒聚醇酸树脂膜,可吸收阳光辐射中的紫外线,保护人的视力;在灯泡罩内壁涂敷的纳米SiO2和纳米TiO2 微粒多层干涉膜,灯泡不仅透光率好,而且具有很强的红外线反射能力,可大大节约电能等。此外,利用Si纳米晶粒薄膜的紫外线光致发光特性,还可获得光致变色效应,从而产生新的防伪、识别手段。3.2纳米耐磨损膜与纳米润滑膜 在一些硬度高的耐磨涂层/薄膜中添入纳米相,可进一步提高涂层/薄膜的硬度和耐磨性能,并保持较高的韧性。此外,一些表面涂层/薄膜中加入一些纳米颗粒,如C60 富勒烯、巴基管等还可达到减小摩擦系数的效果,形成自润滑材料,甚至获得超润滑功能。事实上,在Ni等基体表面上沉积纳米Ni-La2O3 曲,薄膜后,除了可以增加基体的硬度和耐磨性外,材料的耐高温、抗氧化性也显著提高。3.3纳米磁性薄膜

经过纳米复合的涂层/薄膜具有优异的电磁性能。利用纳米粒子涂料形成的涂层/薄膜具有良好的吸波能力,可对飞行器、重型武器等装备起到隐身作用;纳米氧化钛、氧化铬、氧化铁和氧化锌等具有半导体性质的粒子,加人到树脂中形成涂层,有很好的静电屏蔽性能;纳米结构的Fe/Cr,Fe/Cu,Co/Cu等多层膜系统具有巨磁阻效应,可望作为应用于高密度存储系统中的读出磁头、磁敏传感器、磁敏开关等。3.4纳米气敏薄膜

由于气敏纳米膜吸附了某种气体以后会产生物理参数的变化,因此可用于制作探测气体的传感器。目前研究最多的纳米气敏薄膜是SnO2 超微粒膜,该膜比表而积大,且表面含有大量配位不饱和键,非常容易吸附各种气体在其表面进行反应,是制备气敏传感器的极佳功能材料。3.5纳米滤膜

纳米滤膜是一种新型的分离膜,可分离仅在分子结构上有微小差别的多组分混合物,它常常被用来在溶液中截留某些有机分子,而让溶液中的无机盐离子自由通过。目前商业化的纳米滤膜的材质多为聚酰胺、聚乙烯醇、醋酸纤维素等,这些纳米滤膜除了具有微筛孔外,滤膜上各基团往往还带有电荷,因此,还可以对某些多价的离子进行截留,而让其他离子通过滤膜。现在,纳米滤膜已经在石化、生化、食品、纺织以及水处理等方面得到广泛应用。

4.纳米薄膜的发展前景

纳米薄膜材料的研究是纳米科学技术领域的重要内容,在许多领域内都有着广泛的应用前景。世界上的发达国家都把纳米薄膜材料的研究列入国家发展规划中。我国对纳米薄膜材料的研究也非常重视,利用新的物理化学性质、新原理、新方法设计纳米结构性器件和纳米复合传统材料改性正孕育新的突破。相信纳米薄膜材料将会在未来给人们带来更多的惊喜。

参 考 文 献

[1]张立德.纳米材料研究的新进展及在 21 世纪的战略 地位, 中国粉体技术[J].2000, 6(1):1~ 5 [2]高海永,庄惠照,薛成山,王书运,董志华,何建廷.竹叶状GaN纳米带的制备[J].电子元件与材料.2004(09)[3]Ji-Hyuk Choi,Moon-Ho Ham,Woong Lee,Jae-Min Myoung.Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation Solid.State.Commun.2007 [4]王非.GaN纳米线和薄膜的制备及其特性研究[D].太原理工大学 2007 [5]李鹏.纳米薄膜材料制备工艺研究[D].重庆大学 2004 [6]曹铖.聚苯乙烯纳米薄膜的制备与表征[D].天津大学 2010 [7]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版).2005(01)

第四篇:二维纳米薄膜材料概述

二维纳米材料概述

-----纳米薄膜概述

班级:材料科学与工程103班

姓名:卢忠

学号:201011601322

摘要 纳米科学技术是二十世纪八十年代末期诞生并快速崛起的新科技,而其二维纳米结构——纳米薄膜在材料应用以及前景上都占据着重要的地位。纳米薄膜材料是一种新型的薄膜材料,由于其特殊的结构和性能,它在功能材料和结构材料领域都具有良好的发展前景。本论文着重介绍纳米薄膜的制备方法、特性以及研究前景。纳米薄膜材料性能较传统的薄膜材料有更加明显的优势,特别是纳米磁性多层膜、颗粒膜作为一种新型的复合材料将是今后的研究方向。

关键词:纳米;薄膜材料

目录

一.薄膜材料定义............................................................(1)二.纳米薄膜的分类..........................................................(1)三.纳米薄膜的制备方法......................................................(2)四.纳米薄膜特性............................................................(4)五.应用及前景..............................................................(6)参考文献

一.薄膜材料定义:纳米薄膜是指尺寸在纳米量级的晶粒构成的薄膜或将纳米晶粒薄膜镶嵌于某种薄膜中构成的复合膜,以及层厚在纳米量级的单层或多层薄膜,通常也称作纳米颗粒薄膜和纳米多层薄膜。

二.纳米薄膜的分类

1.纳米薄膜,按用途分为两大类:纳米功能薄膜和纳米结构薄膜。

纳米功能薄膜:主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。

纳米结构薄膜:主要是通过纳米粒子复合,提高材料在机械方面的性能。

2.按膜的功能分

纳米磁性薄膜 纳米光学薄膜 纳米气敏膜 纳滤膜、纳米润滑膜 纳米多孔膜

LB(Langmuir Buldgett)膜

SA(分子自组装)膜 3.按膜层结构分类

单层膜

如热喷涂法的表面膜等

双层膜

如在真空气相沉积的反射膜上再镀一层 多层膜

指双层以上的膜系

4.按膜层材料分

金属膜,如Au、Ag等 合金膜,如Cr-Fe、Pb-Cu等 氧化物薄膜 非氧化物无机膜 有机化合物膜

三.纳米薄膜的制备方法

纳米材料的合成与制备一直是纳米科学领域内一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。最早是采用金属蒸发凝聚-原位冷压成型法制备纳米晶体,相继又发展了各种物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等。

1.化学法:指在镀膜技术中,有化学反应参与,通过物质间的化学反应实现薄膜的生长。

(1)化学还原法

(2)化学气相沉积法(CVD):包括常压、低压、等离子体辅助气相沉积等。该方法通过在高温、等离子或激光辅助等条件下控制反应气压、气流速率、基片材料温度等条件,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而获得纳米结构的薄膜。用CVD法制备薄膜材料是通过使原料气体以不同的能量使其产生各种法学反应,产物在基片上生长、沉积成固体薄膜。

(3)高温分解法

(4)溶胶-凝胶法:这种方法是20世纪60年代作为一种制备玻璃、陶瓷等无机材料的合成工艺而开发的。溶胶–凝胶法可以赋予基体多种特殊性能,其中包括机械、化学保护、光学、电磁和催化等。溶胶–凝胶法制备薄膜,首先必须制得稳定的溶胶,按其溶胶的方法,将溶胶–凝胶工艺分为有机途径和无机途径,两者各有优缺点。与其他制备薄膜的方法相比,溶胶–凝胶法工艺设备简单,温度低,易于大面积制备各种不同形状、材料的薄膜,用料省、成本较低。

(5)电浮法(6)阴极电镀法

2.物理法:指在薄膜沉积过程中,不涉及化学反应,薄膜的生长基本是物理过程。

物理气相沉积(PVD)是一类常规的薄膜制备手段,它包括蒸镀、电子束蒸镀、溅射等。主要通过两种途径制膜:

(1)在非晶薄膜晶化过程中控制纳米结构的形成。

(2)在薄膜的成核过程中控制纳米结构的形成。物理气相沉积主要包括以下三点:

①气相物质的产生。在蒸发镀膜方法中,用加热源使其蒸发;而在溅射镀膜中,则用具有一定能量的粒子轰击靶材。

② 气相物质的输送。由于有气体存在时会与气相物质发生碰撞,因此气相物质的输送往往在真空中进行。

③ 气相物质的沉积。气相物质在基片上的沉积是一个凝聚过程。根据凝聚条件的不同,可以形成单晶膜、多晶膜或者非晶态膜。

3.分子组装方法

(1)LB膜技术

LB膜技术就是先将双亲分子在水面上形成有序的紧密单分子薄膜,再利用端基的亲水、疏水作用将单层膜转移到固体基片上。由于基片与分子之间的吸附作用,单分子层级成绩在固体基片上。这样基片反复的进出水面就可以形成多层膜。LB膜随着转移方式的不同可得到X型、Y型和Z型。LB膜的制备是将悬浮在气/液界面的单分子膜转移到基片表面。最常用的方法是垂直拉提法、水平拉提法、亚相降低法、扩散吸附法和接触法。

(2)分子自组装技术

分子自组装(SA)薄膜技术是一种在平衡条件下通过建的相互作用,自发结缔形成性能稳定的、结构完整的薄膜的方法。SA成膜技术主要包括基于化学吸附的自组装成膜技术,和基于物理吸附的离子自组装膜技术。

①基于化学吸附的SA技术

其基本方法是:将表面修饰有某种物质的基片浸入待组装分子的溶液中,待组装分子一端的反应基于基片表面发生自动连续的化学反应,在基片表面形成化学键连接的二维有序单层膜;如果单层膜表面也有具有某种反应活性的基团,则又可以和别的物质反应,如此重复就构建成同质或异质的多成膜。SA技术形成的多层膜有如下主要特征:①.原位自发形成;②.热力学性质稳定;③.物理基片形状如何,其表面均可形成均匀一致的覆盖层;④.高密度堆积和低缺氧浓度;⑤.分子有序排列;⑥.可人为设计分子结构和表面结构来获得预期的物理和化学性质;⑦.有机合成和制膜有很大的灵活性。

②基于物理吸附的SA膜技术

基于物理吸附的SA膜技术又叫做离子自组装技术,其原理是将表面带负电荷的基片浸入阳离子聚电解质溶液中,由于静电吸引,阳离子聚电解质聚集到基片表面,使基片表面带正电,然后将基片再浸入阴离子聚电解质溶液中,如此重复进行,就会形成多层聚电解质自组装膜。

这种建立在静电互相作用原理基础上的自组装技术,是一种新型的制备聚合物纳

米复合膜的方法。它的特点是:①对沉积过程或膜结构进行分子级控制;②.利用连续沉积的方法,可实现层间分子对称或非对称二维或三维超晶格结构,从而实现膜的光、电、磁、非线性光学性能的功能化;③.可形成仿真生物膜;④.层与层之间膜的稳定性极好;⑤.与基于化学吸附法制备有机复合膜相比,具有较好的重复性。

四.纳米薄膜特性

1.纳米薄膜的力学性能:纳米薄膜的性能强烈依赖于晶粒(颗粒)尺寸、膜的厚度、表面粗糙度及多层膜的结构,这也就是日前纳米薄膜研究的主要内容。

硬度:纳米多层膜的硬度与材料系统的组分、各组分的相对含量、薄膜的调制波长有着密切的关系。

机械性能较好的薄膜材料一般由硬质相〔如陶瓷材料)和韧性相(如全属材料)共同构成。因此如果不考虑纳米效应的影响和硬质相含量较高时,则薄膜材料的硬度较高,并且与相同材料组成的近似混合的薄膜相比,硬度均有所提高。

韧性:多层膜结构可以提高材料的韧性,其增韧机制主要是裂纹尖端钝化、裂纹分支、层片拔出以及沿界面的界面开裂等,在纳米多层膜中也存在类似的增韧机制。

影响韧性的因素主要有组分材料的相对含量及调制波长。在金属/陶瓷组成的多层膜中,可以把金属作为韧性相,陶瓷为脆性相,实验中发现在TiC/Fe、Ti/Al、TiC/W多层膜系中,当金属含量较低时,韧性基本上随金属相含量的增加而上升,但是在上升到一定程度时反而下降。

耐磨性:研究发现合理搭配材料可以获得较好的耐磨性。从结构上看,多层膜的晶粒小,原子排列的晶格存在缺陷的可能性增多,晶粒内的晶格点阵畸变和晶格缺陷的增多,使晶粒内部的位错滑移阻碍增加;此外,多层膜相界面结构也非常复杂,由于不同材料位错能的差异,也会导致薄膜材料的耐磨性的不同。

2.光学性能

(1)蓝移和宽化

用胶体化学法制备TiO2/SnO2超颗粒及其复合LB膜具有特殊的紫外-可见光吸收光谱。TiO2/SnO2超颗粒具有量子尺寸效应使吸收光谱蓝移。TiO2/SnO2-硬脂酸复合LB膜具有良好的抗紫外线性能和光学透过性。

(2)光学线性与非线性

光学线性效应是指介质在光波场作用下,当光强较弱时,介质的电极化强度与光波电场的一次方成正比的现象。一般说来,多层膜的每层膜厚度与激子玻尔半径(aB)相近

或小于aB时,在光的照射下,吸收谱上会出现激子吸收峰,这种现象也属于光学效应。半导体InCaAlAs和InCaAs构成的多层膜,通过控制InCaAs膜的厚度,可以很容易地观察到激子吸收峰。

光学非线性是在强光场的作用下,介质的电极化强度中就会出现与外加电磁场的二次、三次乃至高次方成比例的项。对于纳米材料,小尺寸效应、宏观量子尺寸效应、量子限域和激子是引起光学非线性的主要原因。

3.电磁学特性

(1)磁学特性

磁性材料在吸波材料中最具特色和发展潜力,高磁导率金属材料一般具有高电导率,高频下易产生大涡流,对电磁波强反射而难以被吸收。采用薄膜多层化设计,用绝缘介质层将高磁导率金属层间隔形成纳米多层膜复合结构,可能获得高频下的高磁导率和大磁损耗。某文献研究报道了C0923zr7Ndn,薄膜材料的高频磁谱特性,该材料具有高的磁损耗,有可能成为GHz频段抗EMI材料,难以应用于高于2 GHz频段。华中科技大学邓联文吲等人研究一种能用于微波吸收的高磁损耗型纳米多层膜材料,并获得了高于2GHz频段的高磁导率。

(2)电学特性

有人在Au/Al2O3de 颗粒膜上观察到电阻反常现象,随着纳米金颗粒含量的增加,电阻不但不减小,反而急剧增加。实验证明,材料的导电性与材料颗粒的临界尺寸有关。当材料颗粒小于临界尺寸时,它可能失去原来的电学性。

(3)气敏特性

采用PECVD方法制备的SnO2超微粒颗粒薄膜比表面积大,存在不饱和配位键,表面存在很多活性中心,容易吸附多种气体而在表面进行反应,是很好的制备传感器的功能膜材料。

五.应用及前景

1.应用(1)金属的耐蚀薄膜:非晶态合金膜是一种无晶界的,高度均匀的单相体系,且不存在一般金属或合金所具有的晶体缺陷,因此,它不存在晶体间腐蚀和化学偏析,具有极强的防腐蚀性能。

如化学沉积制备非晶态的Ni-P合金。由于它没有晶态Ni-P合金所具有的两相组织,无法构成微电池。其镀层可使金属材料原来敏感的点蚀、晶间腐蚀、应力腐蚀和氢脆等易腐蚀性都得到改善。

(2)多功能薄膜—SnO2由于:SnO2具有良好的吸附性、较低的电阻温度系数及化学稳定性,因此容易沉积在诸如玻璃、陶瓷材料、氧化物材料及其他种类的衬底材料上。SnO2薄膜的主要用途有:薄膜电阻器、透明电极、气敏传感器、太阳能电池、热反射镜、光电子器件、电热转化等。

2.前景

纳米薄膜在很多领域内都有着广阔而先进的应用前景,利用它独有的物理化学性质及特性,设计出新型纳米结构性器件和纳米复合传统材料改性正孕育着新的突破,而功能性的薄膜材料一直是目前研究的热点。

利用纳米薄膜吸收光谱的蓝移和红移特性,人们已经制造出了各种各样的紫外吸收薄膜和红外反射薄膜,并且在日常的生产和生活中获得了广泛的应用;在一些硬度高的耐磨涂层或薄膜中添入纳米相,可进一步提高纳米薄膜的硬度和耐磨性能,并保持较高的韧性;利用纳米粒子涂料形成的涂层具有良好的吸收能力,可对重型设备起到隐身作用,纳米氧化钛、氧化铬、氧化铁等具有导体性质的粒子,有很好的静电屏蔽作用;美国科学家将PAH、PSS沉积到多空聚丙烯膜上,二氧化碳和氮气的选择透过性表明固体二甲基硅烷沉积多层膜后有较高的选择性。

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的要求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越。新材料的创新,以及在此基础上诱发的新技术是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。正想美国科学家估计的“这种人们肉眼看不见的极微小的物质很有可能给各个领域带来一场革命”。在纳米科技的竞争中,我国起步并不算晚,这是我国赶上世界经济发展的又一个不可多得的机遇。

参考文献

[1] 崔传文

姜明

纳米薄膜材料的制备技术及其应用研究 [2] 徐扬海 纳米薄膜材料

[3] 王鹏飞 周剑平巫建功 王永明 ZnO基稀磁半导体纳米薄膜材料的研究进展 [4] 贾嘉 溅射法制备纳米薄膜材料及进展

第五篇:氧化锌纳米材料制备及应用研究

纳米ZnO的合成及光催化的研究进展

摘要:综合叙述了以纳米ZnO半导体光催化材料的研究现状。主要包括纳米光催化材料的制备、结构性质以及应用,同时结合纳米ZnO的应用和光催化的优势阐述了后续研究工作的主要的研究方向。

关键词:纳米;光催化;应用

1.1 ZnO光催化材料的研究进展

纳米氧化锌的制备技术国内外有不少研究报道,国内的研究源于20世纪90年代初,起步比较晚。目前,世界各国对纳米氧化锌的研究主要包括制备、微观结构、宏观物性和应用等四个方面,其中制备技术是关键,因为制备工艺过程的研究与控制对其微观结构和宏观性能具有重要的影响[1]。综合起来,纳米氧化锌的化学制备技术大体分为三大类:固相法、液相法和气相法。1.1.1固相法

固相法又分为机械粉碎法和固相反应法两大类,前者较少采用,而后者固相反应法,是将金属盐或金属氧化锌按一定比例充分混合,研磨后进行燃烧,通过发生固相反应直接制得超细粉或再次粉碎的超细粉。固相配位化学反应法是近几年刚发展起来的一个新的研究领域,它是在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定温度下热分解,得到氧化物超细粉。运用固相法制备纳米氧化锌具有操作和设备简单安全,工艺流程短等优点,所以工业化生产前景比较乐观,其不足之处是制备过程中容易引入杂质,纯度低,颗粒不均匀以及形状难以控制。

王疆瑛等人[2]以酒石酸和乙二胺四乙酸为原料,采用固相化学反应法在450℃热分解4h得到具有纤锌矿结构的ZnO粉体,通过X射线衍射及透射电镜结果分析,合成的产物粒径均小于100nm,属于纳米颗粒范围,而且颗粒大小均匀,粒径分布较窄,并采用静态配气法对气敏特性的研究发现,对乙醇气体表现了良好的灵敏性和选择性。1.1.2气相法

气相法是直接利用气体或通过各种手段将物质变为气体并使之在气体状态下发生物理或化学变化,最后在冷却过程中凝聚长大形成超微粉的方法。气相法包括溅射法、化学气相反应法、化学气相凝聚法、等离子体法、激光气相合成法、喷雾热分解法等。运用气相法能制备出纯度高、分散性好的纳米氧化锌粉体,但是其工艺复杂,设备昂贵,一般需要较高的温度和能耗。

赵新宇等[3]利用喷雾热解技术,以二水合醋酸锌为前驱体通过研究各操作参数对粒子形态和组成的影响,在优化的工艺条件下制得20-30nm粒度均匀的高纯六方晶系ZnO粒子。研究发现,产物粒子分解程度随反应温度的提高、溶液浓度和流量程度的降低而增大,随压力的升高先增大后略有减小,粒子形态与分解程度密切相关,只有当分解程度高于90%以上,才能获得形态规则、粒度均匀的产物粒子,并且由理论计算和实验结果的比较推断出喷雾热解过程超细ZnO粒子的形成机理为一次粒子成核-分裂机理。

1.1.3液相法

液相法制备纳米微粒是将均相溶液通过各种途径使溶质和溶剂分离,溶质形成一定形状和大小的颗粒,得到所需粉末的前驱体,热解后得到纳米微粒。液相法是目前实验室和工业广泛采用的制备纳米粉体的方法。与其他方法相比,该法具有设备简单,原料容易获得,纯度高,均匀性好,化学组成控制准确等优点,主要用于氧化物超微粉的制备。因此本课题也就是基于此来研究几种液相法制备纳米级氧化锌粉体的机理及其工艺。液相法包括沉淀法、水解法、水热法、微乳液法、溶胶-凝胶法等。

(1)沉淀法。

沉淀法是液相化学合成高纯纳米粒子采用的最广泛的方法。它是把沉淀剂加入金属盐溶液中进行沉淀处理,再将沉淀物加热分解,得到所需的最终化合物产品的方法。沉淀法可分为直接沉淀法和均匀沉淀法。直接沉淀法优点是容易制取高纯度的氧化物超微粉,缺点是易于产生局部沉淀不均匀。为避免直接添加沉淀剂产生局部浓度不均匀,可在溶液中加入某种物质使之通过溶液中的化学反应,缓慢的生成沉淀剂,即均匀沉淀法,此法可获得凝聚少、纯度高的超细粉,其代表性的试剂是尿素。

祖庸等[4]以硝酸锌为原料,尿素为沉淀剂,采用均匀沉淀法分别制得了粒径为8-60nm的球形六方晶系ZnO粒子,粒度均匀、分散性好。并且为了考察小试数据的可靠性和进一步给中试提供数据,进行了28倍和168倍放大试验,产品收率达89%,为进一步工业化打下良好的基础。

(2)溶胶-凝胶法。

溶胶-凝胶法是将金属醇盐(如醋酸锌等)溶解于有机溶剂(如乙醇)中,并使醇盐水解,聚合形成溶胶,溶胶陈化转变成凝胶,经过高温锻烧制得ZnO纳米粉体。也可在真空状态下低温干燥,得到疏松的干凝胶,再进行高温锻烧处理。该法制备的氧化物粉末粒度小,且粒度分布窄,可以通过控制其水解产物的缩聚过程来控制聚合产物颗粒的大小。但由于金属醇盐原料有限,因此也出现了一些应用无机盐为原料制备溶胶的方法。

丛昱等[5]以草酸锌为原料、柠檬酸为络合剂,通过溶胶-凝胶法对Zn(OH)2凝胶在400℃下锻烧2h获得结晶型圆球状六方晶型纳米级ZnO超细粉,纯度为99.25%(wt),平均粒径为30nm,粒径分布范围窄。曹建明[6]分别以草酸、柠檬酸和柠檬酸为络合剂,利用溶胶-凝胶法制备了ZnO超细粉体。通过实验摸索出制备小粒径ZnO的最佳工艺条件为:草酸浓度0.3mol/L,乙酸锌浓度0.2mol/L,它们之间的摩尔比为3:1,经分析此时所得ZnO微粉为六方晶型,平均晶粒尺寸在 15.3nm左右,从激光散射测试结果得知,ZnO纳米颗粒在水溶液中存在着软团聚,团聚体最小尺寸为79.4nm,并且对丁烷气体表现出良好的敏感性,可用于制备丁烷传感器。

(3)微乳液法。

微乳液法是两种互不相容的溶剂,在表面活性剂作用下形成乳液,在微泡中经成核、凝结、团聚、热处理后得到纳米微粒。与其他化学法相比,微乳液法具有微粒不易聚结,大小可控且分散性好等优点。

崔若梅等[7]以无水乙醇作辅助表面活性剂,Zn(CH3COO)2·2H2O为原料,添加到十二烷基苯磺酸钠、甲苯、水和吐温80、环己烷、水自发生成的两种不同的微乳液体系中制备出平均粒径位25nm和30nm的超细ZnO粒子,粒度分布均匀,样品纯度也较高。冯悦兵等[8]也采用不同的微乳体系合成了粒径在10-30nm之间的超细ZnO球形粒子,粒度均匀,分散性好,与普通氧化锌相比,粒径减小了一个数量级,并具有特殊的光学性能,即在可见光区有良好的透光率,在紫外区表现出强的宽带吸收,特别是长波紫外线有很强的吸收能力。杨华等[9]采用双微乳液混合法制备了纳米ZnO粉体,经研究分析,所得产物为球形六方晶系结构,平均粒径27nm,粒径尺寸分布范围较窄,99%的颗粒在纳米级范围。另外,还有人用超声辐射沉淀法、水解加热法、超临界流体干燥法等液相法也制得了纳米氧化锌粉体。

随着纳米材料科学技术的进一步发展,新的制备合成工艺被不断的提出并得到利用。国外对纳米氧化锌的研究相对已比较成熟,许多厂家已将先进的技术实现了产业化,制造出高品质的纳米氧化锌产品。目前,山西丰海纳米科技有限公司作为全国最大的纳米氧化锌专业生产企业,现生产能力己达5000 t/a,二期工程正在扩建阶段,完成后生产能力将达到30000 t/a。成都汇丰化工厂开发出纯度大于99.7%、平均粒径为20nm的高纯度纳米级氧化锌,并建成500 t/a的生产线。该厂生产的高纯纳米级氧化锌成本仅有进口的1/10,可广泛用于防晒化妆品、抗菌自洁卫生洁具、压敏及其它功能陶瓷、冰箱空调微波炉用抗菌剂、高级船舶用涂料、高级汽车面漆、气体传感器、光催化剂以及航天航空领域 [10]。

1.2 ZnO的结构和性质

ZnO 晶体具有四种结构:纤锌矿相(四配位,六角结构,B4)、闪锌矿相(也是四配位,但和 B4 相原子排列不同)、NaCl 结构(也叫岩盐结构,B1)和 CsCl 结构(B2)。通常情况下,ZnO 以纤锌矿结构存在,当外界压强增大,大约是 9.6GPa 时向岩盐结构转变,当外界压强增大到 200 GPa 时,向 B2 相转变,而闪锌矿是在生长时形成的亚稳态结构。ZnO 的纤锌矿结构如图1.1 所示,有三个结晶面:(0001)、(10-10)和(11-20),其相应表面能量密度分别为 0.99、0.123 和 0.209 eV/A2,(0001)面的表面自由能最小[11]。

ZnO 属于宽带隙半导体材料,室温下其禁带宽度为 3.37 eV,激子束缚能高达60meV,ZnO 具有较高的热稳性,无毒、无臭,是一种两性氧化物,能溶于强酸和强碱溶液,不溶于水和乙醇。纳米级的 ZnO 是一种人造粉体材料,由于其表面效应和体积效应,使其在磁性、光吸收与催化等方面具有奇异的性质。

各种形貌的 ZnO 材料可以采用不同的合成方法制得,例如棱镜型、椭圆型、笼型、球型、管、空心管、针状、笔状、花状、哑铃型、纳米丝、纳米竿和纳米束等[12]。在这些纳米构型中,一维(1D)ZnO 如纳米丝和纳米杆备受关注,尤其是溶液合成法制得的产品,因为此方法可以在低温下进行,且简单又经济实用。一方面因为一维纳米结构具有特殊的电子转移特性,常用于电子器件;另一方面由于 ZnO 独特的六方型晶体特征使其易于生成一维结构。由溶液合成法得到的延长 ZnO 材料同时具有极性和非极性,通常情况下,ZnO 核原子容易沿极性方面聚集而成一维结构(轴向生长),但是,如果加入成核改良物质使极性纯化,轴向生长受到抑制而易得到扁平结构如薄片或平板状 ZnO(横向生长),因此选择合适的改良剂,可以选择性的得到不同结构型貌的 ZnO晶体,以便开发新的用途[13]。

图.1.1 ZnO 的晶体结构-具有三个取向面(0001)、(10-10)和(11-20)的纤维矿结构

晶格常数为a=3.25A , c=5.2A, Z=2.最近,二维(2D)多孔 ZnO 纳米薄片因其同时具有薄层形貌和多孔结构,可以显著地提高其在光致发光和气敏元件应用方面的性质而备受瞩目,相对于低维(1D 和 2D)结构,三维(3D)结构更易具有特殊的性质,是目前研究的热点[14]。

1.3纳米ZnO粉体的应用

纳米氧化锌是由极细晶粒组成、特征维度尺寸为纳米数量级(1-100nm)的无机粉体材料,与一般尺寸的氧化锌相比,纳米尺寸的氧化锌具有小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应等,因而它具有许多独特的或更优越的性能,如无毒性、非迁移性、荧光性、压电性、吸收散射紫外能力等[15]。这些特性的存在进一步推广了氧化锌的应用,例如用作气体传感器、变阻器、紫外屏蔽材料、高效光催化剂等。1.3.1气敏材料[16]

环境污染目前是在全球范围内广受关注的问题。由于可挥发有机物(VOCs)广泛应用于染料、药物、塑料、橡胶、室内装修等行业,与人们的日常工作和生活有着密切的关系。人吸入过量的VOCs,会导致或加重过敏、哮喘、癌症、肺气肿等症状的发生。特别是近年来,由于室内装修空气质量不合格而导致住户死亡的报道屡见不鲜,人们对VOCs的检测提出了新的更高的要求。纳米材料的发展和应用已成为气敏材料的研究热点,这是因为纳米材料具有特殊的结构和效应,使其显示出良好的气敏特性。ZnO是最早使用的气敏材料,与广泛使用的SnO2相比,工作原理相同,检测灵敏度较SnO2低,除此之外,其它性能并不逊色,而且还具有价格便宜,适宜制备等优点。所以目前国内外在这方面的研究很多。ZnO气敏元件主要有烧结型、厚膜型、薄膜型三种。虽然目前薄膜型ZnO的研究非常活跃,但烧结型和厚膜型元件具有制作简单、价格便宜和检测方便等优点,易于使用化,有很好的应用前景,而这类元件都是以颗粒状ZnO为基础的,所以制备出纳米级ZnO颗粒是制备气敏元件的第一步。

新疆大学应用化学研究所沈茹娟等人以酒石酸和乙二胺甲基酸为原料,通过固相反应法制备的气敏材料氧化锌,测试了材料在不同工作温度下对乙醇、氨气、液化石油气的灵敏度。实验结果表明,所合成的纳米氧化锌具有工作温度低、对乙醇气体灵敏度高的特点。1.3.2光催化污水处理材料[17]

随着我国工业的飞速发展,一些化工厂、印染厂、造纸厂、洗涤剂厂、食品厂等工厂的有机物废水排放越来越受到环境保护法规的制约,而目前常用的有机物废水处理技术难以达到有效的治理。物理吸附法、混凝法等非破坏性的处理技术,只能将有机物从液相转移到固相,不能解决二次污染问题。而化学、生化等处理技术除净度低,废水中有机物含量仍远远高于国家废水排放标准。半导体多相光催化是近20年发展起来的新兴领域,许多有机化合物如烃、卤代烃、有机酸类、多环芳烃、取代苯胺、杂环化合物、表面活性剂、酚类、农药、细菌等都能有效地进行光催化降解反应生成无机小分子。因反应体系在催化剂作用下将吸收的光能直接转化为化学能,使许多难以实现的反应在温和的条件下顺利进行,能量消耗低,不会产生二次污染,应用范围相当广泛,对解决日益严重的农药废水污染问题极具有实用和推广价值。目前,人们对纳米TiO2催化剂进行广泛的研究,主要集中在水中污染物的光催化降解中,如降解苯酚、有机磷农药、染料等。由于纳米TiO2成本比较高、设备投资大等缺点,其应用受到限制,而纳米ZnO作为一种新型的功能材料,由于成本低廉,在光催化领域将具有很好的应用前景。

纳米ZnO是一种很好的光催化剂,在紫外光的照射下,能分解有机物质,能抗菌和除臭。水中的有害有机物质如有机氯化物、农药、界面活性剂、色素等,用目前的水处理技术充分去除是困难的。近年来广泛进行了把这些物质用光催化剂分解处理的尝试,已经召开了几届有关这方面的国际会议。其中重要的光催化剂包括氧化钛和氧化锌等。氧化锌作为光催化剂可以使有机物分解,研究表明,纳米氧化锌粒子的反应速度是普通氧化锌粒子100-1000倍,而且与普通粒子相比,它几乎不引起光的散射,且具有大的比表面积和宽的能带,因此被认为是极具应用前景的高活性光催化剂之一。1.3.3抗菌自洁陶瓷材料[18]

随着科技的进步,社会的发展和人民生活水平的提高,健康的生存环境日益成为人类的追求目标,环境保护问题已不可避免的越来越受到重视。抗菌(杀菌)陶瓷是一种保护环境的新型功能材料,是抗菌剂、抗菌技术与陶瓷材料结合的产物,也是材料科学与微生物学相结合的产物,是利用高科技抑制和杀灭细菌,使传统的产品增加科技含量的典型例证。它在保持陶瓷制品原有使用功能和装饰效果的同时,增加消毒、杀菌及化学降解的功能,即它具有抗菌、除臭、保健等功能,从而能够广泛用于卫生、医疗、家庭居室、民用或工业建筑,有着广阔的市场前景,已成为高技术产品研究的热点之一。现今用于陶瓷制品的抗菌材料主要是无机抗菌材料,按照抗菌材料的不同,抗菌陶瓷主要分为载银抗菌陶瓷和光触媒抗菌陶瓷,纳米光催化抗菌陶瓷具有抗菌持久、杀菌彻底、无毒健康、环境友好等优点,是传统银系抗菌陶瓷的换代产品。

纳米光催化抗菌陶瓷制品在色釉、形貌及力学性质上与传统的卫生陶瓷和建筑陶瓷相同,只需在未烧成的卫生陶瓷釉面上喷涂一定厚度的涂层并与卫生陶瓷上的釉形成混合层,干燥,高温烧结而成。纳米ZnO抗菌陶瓷就是将一定量的ZnO、Ca(OH)

2、AgNO3等制成涂层,由以下三种方法制成:(1)将含纳米ZnO釉涂在陶瓷坯釉面上而后烧成;(2)将含纳米氧化锌抗菌釉与传统釉料混匀后涂在陶瓷坯上烧成;(3)将氧化锌抗菌陶瓷釉直接涂在陶瓷坯面上烧成。但是目前光触媒应用于抗菌陶瓷最多的还是TiO2,关于纳米ZnO抗菌陶瓷的报道还很少。1.3.4半导体材料

作为重要氧化物半导体,纳米ZnO由于良好的光电性能早就引起人们的重视。研究表明,纳米ZnO存在很强的紫外及蓝光发射,可用于新型发光器件。

目前,人们已研制出ZnO纳米线、纳米管、纳米带,这些纳米材料表现出许多特异的性质。美国亚特兰大佐治亚理工学院王中林等在世界上首次获得了具有压电效应的半导体纳米带结构,进而又研制出了具有压电效应的纳米环。这种新型结构可用于微、纳米机电系统,是实现纳米尺度上机电藕合的关键材料,在微/纳米机电系统中有重要的应用价值,利用这种纳米带(环)的压电效应,可以设计研制各种纳米传感器、执行器、以及共振藕合器、甚至纳米压电马达。利用其优秀的光电性能,纳米ZnO半导体在纳米光电器件领域具有广阔的应用前景,如纳米尺度的激光二极管、紫外激光探测器等。利用ZnO的紫外发光特性,可以做成超小型的激光光源。杨培东[19]等在只有人类头发丝千分之一的纳米导线上制造出世界上最小的激光器—纳米激光器。这种激光器不仅能发射紫外光,经过调整后还能发射从蓝光到深紫外的光。室温下,纳米导线中的纯氧化锌晶体被另一种激光激活时,纯氧化锌晶体可以发射出波长只有17nm的激光。这种氧化锌纳米激光器是当今世界上最小的激光器,而且是从纳米技术诞生以来的第一项实际的应用,最终可能被用于鉴别化学物质、提高计算机磁盘和光子计算机的信息存储量。1.3.5磁性材料[20]

磁性材料是电子信息产业发展的基础,工业上广泛使用的锰锌铁氧体(Mn1-xZnx)Fe2O4,其化学成分的比例为Fe2O3:MnO:ZnO=(52.6:35.4:12.0)mol=(70.65:1.13:8.22)wt%,这是一种软磁性材料,具有很好的磁性能(如导磁率可达4000等),该磁性材料的制造工艺极为复杂,需在1300℃下进行烧结。如果采用纳米ZnO作原料,不仅可以简化制造工艺(如不需球磨加工就能达到粒度要求直接配料等),而且还可以提高产品的均一性和导磁率,减少产品在烧制过程中破裂的损失,降低烧结温度,使产品质量显著提高。1.3.6橡胶及涂料材料

在橡胶工业,纳米氧化锌是一种重要的无机活性材料,其不仅可降低普通氧化锌的用量,还可以提高橡胶产品的耐磨性和抗老化能力,延长使用寿命,加快硫化速度,使反应温度变宽。在不改变原有工艺的条件下,橡胶制品的外观平整度、光洁度、机械强度、耐磨度、耐温性、耐老化程度等性能指标均得到显著提高。

纳米氧化锌能大大提高涂料产品的遮盖力和着色力,还可以提高涂料的其它各项指标,并可应用于制备功能性纳米涂料。在涂料应用中,纳米氧化锌的紫外屏蔽性能是其中最大的开发点之一。以往常用的抗紫外剂多为有机化合物,如二甲苯酮类、水杨酸类等,其缺点是屏蔽紫外线的波段较短,有效作用时间不长,易对人体产生化学性过敏,存在有不同程度的毒性。金属氧化物粉末对光线的遮蔽能力,在其粒径为光波长的1/2时最大。在整个紫外光区(200-400nm),氧化锌对光的吸收能力比氧化钛强。纳米氧化锌的有效作用时间长,对紫外屏蔽的波段长,对长波紫外线(UVA,波长320-400nm)和中波紫外线(UVA,波长280-320nm)均有屏蔽作用,能透过可见光,有很高的化学稳定性和热稳定性。同时由于纳米氧化锌的导电性也使涂层具有抗静电能力,提高了涂层的自洁功能。因此,充分利用纳米氧化锌的这些特性可以制备各种纳米功能涂料。例如:将一定量的超细ZnO·Ca(OH)2·AgNO3等加入25%(wt)的磷酸盐溶液中,经混合、干燥、粉碎等再制成涂层涂于电话机、微机等表面,有很好的抗菌性能。添加纳米ZnO紫外线屏蔽涂层的玻璃可抗紫外线、耐磨、抗菌和除臭,用作汽车玻璃和建筑玻璃。在石膏中掺入纳米ZnO及金属过氧化物粒子后,可制得色彩鲜艳、不易褪色的石膏产品,具有优异的抗菌性能,可用于建筑装饰材料。舰船长期航行、停泊在海洋环境中,用纳米氧化锌作为原料,制备舰船专用的涂料,不仅可起到屏蔽紫外线的作用,还可以杀灭各种微生物,从而提高航行速度并延长检修期限。1.3.7日用化工[21]

纳米氧化锌无毒、无味、对皮肤无刺激性、不分解、不变质、热稳定性好,本身为白色,可以简单的加以着色,价格便宜。而且氧化锌是皮肤的外用药物,对皮肤有收敛、消炎、防腐、防皱和保护等功能。可用于化妆品的防晒剂,以防止紫外线的伤害。纳米ZnO还可以用于生产防臭、抗菌、抗紫外线的纤维。例如,日本帝人公司生产的采用纳米ZnO和SiO2混合消臭剂的除臭纤维,能吸收臭味净化空气,可用于制造长期卧床病人和医院的消臭敷料、绷带、尿布、睡衣、窗帘及厕所用纺织品等。日本仓螺公司将ZnO微粉掺入异形截面的聚醋纤维或长丝中,开发出世界著名的防紫外线纤维,除具有屏蔽紫外线的功能外,还有抗菌、消毒、除臭的奇异功能,除用于制造手术服、护士服外,还可制造内衣、外装、鞋、帽、袜、浴巾、帐篷、日光伞、夏日服装、农用工作服、运动服等。1.3.8其它领域应用[22]

随着人们对纳米氧化锌性能认识的深化,纳米氧化锌的应用领域在不断扩大。例如利用活性炭、多孔陶瓷、金属网等材料做载体,负载纳米ZnO光催化剂,制成空气净化材料,可以作为空气净化器的核心部件。近年来开发的片式叠层纳米氧化锌压敏电阻器具有响应时间短、电压限制特性好、受温度影响小、通流能力大等特点,因而被广泛应用在IC(集成电路)保护和互补金属氧化物半导体、场效应管器件保护及汽车线路保护等方面。此外,纳米氧化锌在电容器、荧光材料、表面波材料、图像记录材料、抗静电复合材料等方面也表现出极其广阔的应用前景。

1.4.准备开展工作

我国经济的发展,与制造业、重工业的兴旺是分布开的。然而,这些工厂的发展的同时,也带来了很严重的环境问题——废水、废气、废渣,这些影响着人们的健康。焦化、农药、医药、化工、染料、树脂等行业,范围广,数量多,是环境污染物主要制造者。由于有机类物质具有致癌、致畸形、致突变的潜在毒性,已被各国环保部门列入环境优先污染物黑名单,也是重点监测和治理的对象之一。因此,废水的处理一直是环境保护研究中倍受关注的课题。

目前国内外处理废水的常用方法主要有吸附法、化学氧化法、溶剂萃取法、液膜法、离子交换法和生化法等,各种方法都有自身的优缺点。光催化氧化法属于化学氧化法的一种类型,是近年来发展起来的一种新型技术,由于其具有高效、价廉、对环境友好、容易循环使用等优点,在实验以亚甲基蓝为例,研究水中有机物的光催化降解,其中催化的原材料就是氧化锌和二氧化钛。这两种原料都简单易得、价格便宜、无毒无害,且其纳米颗粒具有良好的光催化性能,所以研究出高催化性能的光催化材料对于水的净化处理有着不言而喻的意义。在这种指导思想下,在后续研究工作中主要采用溶剂热法,以醋酸锌为原料,制备纳米级氧化锌粉体,并确定最佳的原料配比和工艺条件,同时利用X-射线衍射,透射电子显微镜和扫描电子显微镜等方法对制备的ZnO的微观结构进行了表征。希望可以制备出的形状和尺寸控制的氧化锌微粒。

参考文献

[l]王久亮,刘宽,秦秀娟等.纳米氧化锌的应用研究进展.哈尔滨工业大学学报,2004,36(2): 226-230.[2]沈茹娟,贾殿赠,王疆瑛等.纳米氧化锌的固相合成及其气敏特性.无机化学学报,2000, 16(6):906-910.[3]赵新宇,郑柏存,李春忠等.喷雾热解合成ZnO超细粒子工艺及机理研究.无机材料学报,1996,11(4):611-616.[4]刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料导报,1999,14(3): 391-396 [5]丛昱,宁桂玲,黄新等.溶胶-凝胶法合成纳米级ZnO超细粉末.仪器仪表学报, 1995,16(1): 309-313.[6]曹建明.溶胶-凝胶法制备ZnO微粉工艺研究.化学工程师,2005,115(4):3-6.[7]崔若梅,庞海龙,张文礼等.微乳液中制备ZnO、CuO超微粒子.西北师范大学学报(自然科学版),2000,36(4):46-49.[8]冯悦兵,卢文庆,曹剑瑜等.纳米氧化锌的微乳液法合成和吸收性能.南京师范大学学报(工程技术版),2002.2(4):23-25.[9]何秋星,杨华,陈权启等.微乳液法制备纳米ZnO粉体.甘肃工业大学学报,2003,29(3):72-75.[10]潘家祯.纳米材料和纳米科技.化工设备与防腐蚀,2002,5(2):84-91.[11]丁衡高,朱荣.微纳米科学技术发展及产业化启示.纳米技术与精密工程,2007,5(4):235-241 [12]程敬泉.纳米氧化锌的性质和用途.衡水师专学报, 2001,3(2):42-43.[13]习李明.纳米氧化锌的生产和应用进展.化学文摘,2007,(5):53-56.[14]舒武炳,李芸芸.纳米材料在涂料中的应用进展.涂料涂装与电镀,2006,4(6):7-11.[15]郭一萍,董元源.纳米材料的奇异特性及其应用前景.机械研究与应用,2002,15(3):72-75.[16]杨凤霞,刘其丽,毕磊.纳米氧化锌的应用综述.安徽化工,2006,(139):13-17.[17]王久亮.纳米氧化锌制备技术研究进展.硅酸盐通报,2004,(5):58-60.[18]郭伟,詹自立,钟克创等.高灵敏度酒敏元件的研制.郑州轻工业学院学报(自然科学版),2004,14(4):46.[19]杨秀培.纳米氧化锌的制备及其研究进展.西北师范大学学报(自然科学版),2003,24(3): 347-351 [20]戴护民.桂阳海.氧化锌光气敏性能研究.材料导报,2006,(5):21.[21]沈茹娟,贾殿赠,梁凯等.纳米氧化锌的固相合成及其气敏特性.无机化学学报,2000, 16(6):90-91.[22]杨勇,柏自奎,张顺平等.纳米ZnO基掺杂气敏元件阵列的制备与特性.电子元件与材料,2007,26(2):47-51.

下载纳米薄膜材料的制备方法word格式文档
下载纳米薄膜材料的制备方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    纳米TiO2的制备方法与应用(精选五篇)

    1.1 纳米材料的概述 纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就像......

    一维纳米材料的制备概述

    学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教 2015年3月 26日 成绩 一维纳米材......

    纳米材料的制备及应用要点

    本科毕业论文(设计) 题目: 纳米材料的制备及应用学院: 物理与电子科学学院班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日 纳米材料的制备......

    材料合成与制备论文(纳米材料)

    硕研10级20班 材料工程 2010012014 夏春亮 纳米材料的制备方法 纳米制备技术是80年代末刚刚诞生并正在崛起的新技术,其基本涵义是:纳米尺寸范围(10-9~10-7m )内认识和改造自然......

    二氧化钛纳米材料的制备

    二氧化钛纳米材料的制备 陈维庆 (贵州大学矿物加工工程082班学号:080801110323) 摘要:二氧化钛俗称钛白,是钛系列重要产品之一,也是一种重要的化工和环境材料。目前制备纳米二氧......

    纳米材料制备的小论文选题

    纳米材料制备课程的小论文 论文要求:通过查阅文献,写出一篇不少以3000字的科技小论文,小论文内容不得重复,若发现重复内容超过50%的论文,按0分处理。 论文选题如下,若有的同学对其......

    金属纳米材料制备技术的研究进展

    金属纳米材料制备技术的研究进展 摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现......

    发光材料的制备方法

    发光材料的制备方法 随着发光材料基质类型的不断发展,其制备方法也逐渐趋于多样化[7~10]针对各种基质的特点,相应发展出了溶胶-凝胶法、高温固相法、燃烧合成法、微波加热法......