第一篇:图形的运动与坐标课例分析
《图形的运动与坐标》课例分析
第一层次:教学背景分析
一、教学分析
1、教材地位、作用
《图形的运动与坐标》在华师大版数学八年级(下)第18章《图形的相似》第5节第2课时。本章继轴对称、平移、旋转后介绍了相似,相似也是图形之间的一种变换,生活中有大量存在相似图形,从生活实际出发,认识相似图形的特征并用于解决一些简单的实际问题,让学生体会图形经过平移、旋转、轴对称、相似变换后坐标的变化情况。加深对图形的认识,初步体会数形结合的思想。
2、教学目标
知识目标:在同一直角坐标系中,感受图形变化后各点坐标的变化和图形的变化(平移、轴对称、旋转、放大、缩小);并发展学生数形结合的思想。
能力目标:培养学生的观察能力和动手能力。
情感态度目标:在观察、探索的过程让学生获得发现的喜悦,体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养坚强的意志品质。
3、教学重点和难点
重点:同一直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小,探索图形的位置变化引起的点的坐标的变化,点的变化引起的图形的位置的变化。
难点:通过观察、分析、概括把坐标思想与图形变换的思想联系起来,形成数形结合意识。
二、学情分析
1、学生起点分析
八年级下学期的学生已具有图形的平移、旋转、轴对称、相似等变化知识储备,同时已学过建立适当的坐标系来描述物体的位置,能结合具体情景,灵活运用多种形式确定物体的位置,这也是为本节学习图形变化后各点坐标变化带来了知识的可能,但缺乏数形结合意识,所以应加以引导、点拨和启发。
2、教学环境分析
本节是设计在一个平等、民主、合作的环境下进行;同时引入现代教学手段,形成教学环境的选择的多样化。
三、教学方法、手段
教学方法:探索式教学方法。整个教学过程是由问题展示到问题解决,中间围绕“观察----发现----归纳”三个环节组织教学。整个教学模式是由“教师怎么教”转向“学生怎么学”,是从以教师为课堂核心转变为以学生发展为核心,是创新的体现。
教学手段:电脑、实物投影仪等现代教学设备。
四、学法指导
1、感知认识:学生通过认识图形的位置变化引起点的坐标的变化,本节从游戏导入点的位置变化引起坐标的变化
2、实践、探索:通过实例进一步观察图形经过平移、旋转、轴对称、放大或缩小,探索位置变化引起的点的变化经过小组讨论,团结合作,发现、归纳、总结规律。同时每一个学生自己试一试在直角坐标系中画一个自己喜欢的一个图形,并写出图形变化后对应点的坐标,达到巩固目的。
3、迁移拓展:怎样用所学的知识测量我校旗杆的高度。(承上启下的作用)
五、理论依据、数学思想
1、理论依据:本节在教学中采用以学生的发展为核心,让学生真正做到课堂的主人,整节是围绕学生的观察感知,实践,概括把坐标思想与图形变化的思想联系起来。
2、数学思想:本节发展数形结合,形象思维的数学思想。
第二层次:教学展开分析
(一)课题引入:设计一个简单游戏,在班级座位中创造性地建立直角坐标系,确定每位同学在这个坐标系中的位置,接着将一个球按线在班级坐标系中运动,引导学生去发现这个球的移动对坐标变化的影响,并由此过度到图形变化中关键点的坐标变化。这样的设计能较为生动的引导学生进入本节课的教学情景中,同时也能感受将“游戏问题转化为数学问题”的过程。
(二)感知阶段:
例:将右图中的ΔAOB沿x轴向右平移3个单位后得到ΔCDE,三个顶点的坐标有什么变化呢?请回答(1)平移后ΔCDE顶点坐标为多少?(2)比较顶点坐标你发现了什么?
(沿X轴向右平移之后,三个顶点纵坐标都没有改变,而横坐标增加一样数)
问:
1、沿任意方向平移三角形顶点坐标怎么变化?
2、图形作轴对称、旋转、放大或缩小,对应点坐标如何变化?
设计意图:使学生明确本节是研究图形变化对应点坐标如何变化,从平移入手,懂得研究的方法;老师的提问为学生指明方向。但得让学生明确平移方向不是唯一。
(三)深入探究:演示课件
1、请学生观察ΔAOB,画出以X轴,Y轴为对称轴的对称图形,写出了对应点的坐标,四人小组讨论对应点的变化情况,并汇报,(关于X轴对称,横坐标不变纵变为相反数,关于Y轴对称,纵坐标不变横变为相反数)
2、请学生继续观察ΔAOB,画出绕O旋转1800的图形写出了对应点坐标,四人小组讨论对应点坐标变化情况,并作汇报。问旋转任意角度呢?对应点的坐标作如何变化?(留给学生思考)
(图形关于原点对称,横纵皆为相反数)
3、三角形变大(缩小)时顶点坐标变化情况。
问:(1)ΔAOB和它缩小后得到ΔCOD三角形顶点是多少?
(2)你能求出它们的相似比吗?(3)对应点的坐标有什么关系?
(放大或缩小,横坐标都扩大或缩小相同的倍数)
4、学生取出自己准备的坐标纸建立直角坐标系,并任意画出自己所熟悉喜欢的图形,画出以X轴Y轴对称的对称图形作出它经过平移、旋转、轴对称、放大或缩小的图形并写出对应点的坐标。
5、完成课堂练习P91习题1、2
设计意图:让学生自己动手、观察,动脑,与同学合作交流达到本节目标。使学生明确图形运动与坐标变化规律,解决本节重点问题。培养学生的动手能力与观察能力,发展学生数形结合思想,解决难点问题。打破教材束缚画三角形、四边形的范围,由学生画自己“喜欢的图形”进一步研究图形运动与坐标;激发学生学习兴趣;使学生敢于面对学习和生活的困难和挫折,培养学生坚强的意志品质。
(四)迁移拓展:假如给你一把尺子你会测出我们学校旗杆的高度吗?
设计意图:通过知识拓展承上启下的作用。
(五)课堂小结:
(1)图形沿x轴平移,横变纵不变;
图形沿y轴平移,纵变横不变;
(2)图形关于x轴对称,横不变,纵为相反数;
图形关于y轴对称,纵不变,横为相反数;
(3)图形关于原点对称,横纵皆为相反数。
(4)放大或缩小,横纵坐标都扩大或缩小相同的倍数。
(六)布置作业:同步练习P351、2、3
第三层次:教学设计和教学结果预测以及评价
本节课注意培养学生动手、动脑、观察及严谨性,效果较好。
本节课打破教材束缚,让学生自己画喜欢的图形,研究对应点坐标变化情况,激发学生学习的兴趣。
第二篇:2017图形的变换与坐标教案.doc
2.图形的变换与坐标
教学目标
1.在同一直角坐标系中,感受到图形经过平移、旋转、轴对称放大或缩小的变换之后,点的坐标相应发生变化。
2.探索图形在平移、轴对称、放大或缩小的变换,它们点的坐标的变化规律。教学过程
一、复习
1.△ABC中,AB=AC,BC=6,AC=5,建立直角坐标系,写出各顶点的坐标。
2.你能画与△ABC成轴对称的三角形吗?请画一个以直线BG为对称轴的三角形。
二、新课讲解
如果以C为坐标原点,CB所在直线为x轴,建立坐标系,上述(1)的各顶点坐标为多少?(画成与厚纸片相
1.把厚纸片的三角形向右边移动3个单位,问:
(1)这时三角形的位置发生了什么变化?
向右平移3个单位。
(2)这时三角形的三个顶点的坐标有什么变化,写出它们这个位置时的三个顶点坐标。
(3)比较相应顶点的坐标,它们之间存在什么相同之处?
相应顶点的横坐标都增加了3个单位,而纵坐标都不变。
2.把纸片三角形向左平移4个单位,后以同样的问题回答。
发现相应顶点横坐标有变化,减少了4个单位,纵坐标不变。
3.把纸片三角形再变换一个位置后,向左、右两边平移,观察各对应顶点的坐标的变化。
问:由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标,横坐标各有什么变化?
它们的纵坐标都不变,横坐标有变化。向右平移几个单位,横坐标就增加几
直角符)
个单位;向左平移几个单位,横坐标就减少几个单位。
4.若把这个三角形沿y轴上、下平移呢?
思考:△AOB关于x轴的轴对称图形△OA′B,点的坐标有什么变化呢?
关于x轴对称,由于O、B在对称轴上,其坐标不
变,那对应顶么点 A与对称点A′关于x轴对称,它们的横坐标相同,纵坐标是互为相反数,这就得出关于x轴对称的对称点的坐标的特点是:横坐标不变,纵坐标互为相反数。
△AOB关于y轴的轴对称图形△AlOBl,对应顶点的坐标有什么变化?
得出关于x轴或y轴成对称的对应点的坐标的关系:
关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。
课本78面图24.6.7,△AOB的各顶点坐标是什么?0(0,0),A(2,4),B(4,0),缩小后得到的△COD,各顶点的坐标是什么呢?O(0,0),C(1,2),D(2,0),比较各对应顶点的坐标有什么呢?它们的横纵坐标都按比例缩小,这种变化与它们的相似比有什么关系呢?
三、练习
1.线段AB的两端点A(1,3),B(2,-5)。
(1)把线段AB向左平移2个单位,则点A、B的坐标为:A__B__。
(2)线段AB关于x轴对称的线段A′B′,则其坐标为:A′_,B′_。
(3)把线段AB向上平移2个单位得线段A1Bl,AlBl关于y轴对称的线段A2B2,那么点A2的坐标为___,点B2的坐标为___。
2.课本第77页“试一试”。
四、小结
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化,它们的变化是有规律的,要按照变化的情况,同学观察、总结会得出变化规律(由同学说出变化规律)。
五、作业
第三篇:图形的运动(评课稿)
《图形的运动----平移》评课稿
刚才肖凤老师为我们展示了一堂精彩的数学课。伟大的教育家弗赖登塔尔说:“学习唯一的正确方法是实现再创造”。肖凤老师采用了导学案中的“导+教”模式。让学生通过自主学习利用导学单“看一看””想一想”“说一说“画一画”的数学活动,体验知识的形成建构过程,并让学生利用平移知识解决简单的数学问题。不仅让学生获得了基本的数学活动经验,更让学生领悟了“化难为易”的数学思想及“转化”的数学方法。我认为本节课的亮点主要通过以下几点来体现:
一、创设情景,数学教学生活化。在新课标中明确指出教学中教师要充分利用学生的生活经验,设计生动有趣的数学教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学知识。课始,肖凤老师让学生观察几张图片复习轴对称图形的知识,再同过观察一些物体运动的图片,如拉门,推拉窗户,升旗等,让学生初步感知平移现象。用动作表示,使学生的认识逐步加深,发现平移的特点,从而导出课题使整节课在轻松愉悦的氛围下拉开帷幕。把抽象的概念通过让学生用眼观察、动手操作、自身体验化为学生看得到、摸得着的现象。不仅强化了对平移的认识,加深了学生对所学数学知识的感悟,同时也加深了他们对数学来源于生活,数学应用于生活,数学与我们的生活息息相关的体会。
二、巧妙突破识别平移距离的难点。知识的本质是活动。要使学生获得知识,形成技能,十分重要的是要科学,合理地设计各种形式的活动。看图识别图形在方格纸上平移了几格,是本课的一个难点。学生常常误认为两个图形中间空了几格,就是平移了几格。因此,肖凤老师分了三个层次进行教学。肖凤老师先让学生观察小树向左平移7格和向上平移5格的图形,让学生活动单填完整,并想一想是怎么数出不同方向平移的格子数的?学生汇报时意见产生分歧:有的是看整个图数(即数间隔数),有的是看格子数,有的是看某一个点来数。第二层次,学生在两幅图中找对应点确定平移格子数,通过多媒体一格一格地演示,学生动手来验证,让学生一次又一次地感知位置变化,这有助于有效、直观地形成平移距离的正确观念。通过动静结合的方法,让学生自己去经历实践体验思考的过程,把时间和空间给学生,再让学生交流汇报,互帮互学,这样在突破本节课教学难点的过程中,教师只要起一个指导者和引导者的作用,让学生真正成为探索知识获取知识的主人,还获得成功的喜悦。第三层次错误呈现:图图这样数行不行?引导学生质疑,进而进一步理解平移的特征:对应点之间的距离都相等。图形平移几格,图形上任一点都像向同方向平移了几格。三个层次的教学,使学生在思维的碰撞过程中,对知识的理解不断得到完善。达到了做中学,乐中学的目的,使学生在活动化的情境中感受教学体验教学。
三、运用多种感官,促进学生空间观念的发展。“重视学生的动手实践活动,使学生从数学现实出发”。平移现象在生活中虽随处可见,但其特点要让学生用语言表达很难。于是,肖凤老师让学生运用手势比划的动作弥补语言表达的不足,让学生在比划演示中感知平移的运动方式,充分调动学动手,眼.口等多种感官参与学习活动,使学生在活动化的情景中学习,不仅解决了数学知识的高度抽象性和儿童思维发展具体形象的矛盾,而且使学生主动参与,积极探究对平移现象更深刻的理解。鼓励尝试,解决问题自主化在教学过程中,老师注意自己的位置,始终把学生放在主体的地位,本课设计了探索性的教学活动,启发学生探索解决问题的方法,是学生从中掌握发现问题和解决问题的规律,把“引”和“探”有机结合起来,有效地促进学生自主学习和创造性学习。教学例2时,鼓励学生用自己的方式解决问题,促使学生运用所学知识和技能,通过自主探索,合作交流去解决问题,发展学生的创新精神。
四、合理利用了多媒体课件。本节课内容是从运动变化的角度去探索和认识空间与图形,如果本课教学时,没有动态素材的呈现,是很难达到教学目标的。教学中,感知平移现象时,课件动态出了运动现象,加强了对概念的巩固;研究平移距离时,课件上可以随机点小树上的每一个对应点进行移动,解决了学生回答随机性的困难,突破了教学难点;综合应用时,动态呈现富有情趣的练习,提高了学生练习的兴趣,有效地培养了学生的审美情趣,体会到平移现象在设计中的作用,也让学生感悟到数学知识在生活中的应用。
五、导学案的合理使用。肖老师为使学生达成本节课的学习目标,导学案的设计彰显了本节课的重难点,不仅使学生在练习中巩固知识点,并且亲身体验了动手操作获得的成功喜悦,又内涵了本节知识点的检测。总之这节课中,老师从学生的知识基础出发,循序渐进,由浅入深,在轻松愉悦的氛围中感悟体验中学习数学,身心得到了全面发展。
第四篇:《图形的运动》的教学分析
《图形的运动》的教学分析
教材分析:
本单元包括三部分内容:认识轴对称、平移和旋转、剪一剪等。这些内容都是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象能力都有着不可忽视的作用。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。
学情分析:
轴对称、平移和旋转都是学生在日常生活中经常看到的现象,是两种基本的图形变换。二年级学生的能力差别比较大,学习态度、学习兴趣和学习习惯也有不同的层次,对空间图形的理解水平参差不平,针对这一实际情况,对不同的学生课时目标也应有不同的要求。本单元的平移、旋转和轴对称知识的综合运用,有利于学生进一步认识图形的变换,发展他们的空间观念。教学时,可以采用小组合作学习的形式,让学生观察日常生活中所熟悉的物体,注重实践活动的丰富多样性,帮助学生发展空间观念,使学生能在不同数学活动的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时可以获得广泛的活动经验。
教学目标:
1、知识技能:使学生学会辨认轴对称图形;结合实例,初步感知平移、旋转现象。
2、数学思考:通过观察、操作、想象,经历一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,能有条理地表达图形的变换过程,发展空间观念。
3、问题解决:经历运用平移、旋转或轴对称进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案。
4、情感态度:通过观察、操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
教学重难点: 教学重点:从实物对称抽象出轴对称图形,感知旋转与平移现象。
教学难点:正确判断、区别旋转与平移现象,培养学生的形象思维能力和逻辑思维能力。
第五篇:初中数学空间与图形课堂教学设计课例分析
初中数学空间与图形课堂教学设计课例分析
“空间与图形”的内容体现出现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间、并进行交流的重要工具。在初中学段中,学生将探索基本图形(直线、圆)的基本性质及其相互关系,进一步丰富对空间图形的认识和感受,学习习近平移、旋转、对称的基本性质,欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法,发展空间观念。
这一阶段中,推理与论证的学习从以下几个方面展开:
1、在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理的思考与表达;
2、在积累了一定的活动经验与图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。
应该注意的方面:
1、在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;
2、应注重对证明本身的理解,而不追求证明的数量和技巧。证明的要求控制在《数学课程标准》所规定的范围内。
3、正确理解《数学课程标准》中关于“空间与图形”的教学内容标准,这是我们实际进行教学设计的标尺。
以《等腰三角形》的教学案例为例,教学设计一般要重点关注以下几个方面:、教学内容的研究:教学设计时应明确课堂教学中要产生哪些新的知识点,分析这些知识在数学体系中的地位和作用,了解它们与学生已有的知识间有着怎样的联系与区别。
在《等腰三角形》教学案例中,通过对教学内容的研究,明确了本节课是在轴对称基础上学习特殊三角形(多边形的一种特殊形式)的性质及应用,它是数学《空间和图形》的一个重要内容。这节课首先从现实形象引入、进而利用已经学习的“轴对称”知识结合现实生活实际总结、形成等腰三角形的概念;同样,对等腰三角形的学习及应用又是以后学习三角形及有关平移、全等形等知识的重要前提知识。
在具体设计学生学习等腰三角形的概念和探索它的基本性质的教学环节时,根据教学内容,把握“生活----数学----生活”的设计原则,不仅可以使学生感受到等腰三角形、对称性与实际生活密切相关,增强对图形欣赏的意识。、对学生状况的研究:教学过程中的教学设计还应考虑到学生的学习能力、接受能力、空间想象能力等。应分析学生的知识基础、认知能力、学习习惯等,这样才能有针对性地制定出恰当的教学目标,才能选取有效的教学方法和教学手段进行我们的教学。
在了解本节课教学内容后,由于等腰三角形是七年级学生所要学习的内容,而对于他们来说,空间思维能力有限。因此,利用轴对称的立体变换、重合等空间想象过程来理解等腰三角形底边中线、垂直线、顶角平分线三线合一的性质时有一定的困难。因此,教学过程中应根据这种具体情况采用启发讲授、小组讨论、合作探究相结合的教学方式。坚持“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程。
针对于对图形、图像的需要还可以将教学教学信息化充分利用起来:充分利用多媒体课件,动态、形象的进行从“轴对称”的知识转化到等腰三角形的知识上来,比如“互相重合”的动态演示等等。这样可以充分的调动学生的学习积极性,并把他们吸引到课堂上来。、教学目标的制定:
本节的教学目标如下:理解等腰三角形的相关概念,两个定理的理解及应用。理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,学会归纳、总结一些有益的结论。体会数学的对称美,体验团队精神,培养合作精神。
注意事项:教学目标要具体要多用些显性化的动词,如:使学生能识别 ……,让学生在经历 ……的过程中获得 ……,使学生会做 ……,使学生能解决 ……的问题等等。、教学重点难点的确定:
在认真分析本节课的数学本质及学生的思维障碍的前提条件下,设计出突出重点、突破难点的具体的方式方法。突出教学内容中最核心、最本质的部分。通过对教学内容的研究,确定本节课的教学重点;通过对学生状况的研究,确定本节课的教学难点。
《等腰三角形》中等腰三角形概念的理解以及三线合一的理解、识记是本节课的教学重点,而等腰三角形三线合一的具体应用、等腰三角形图形组合的观察,总结和分析。是本节课的教学难点。、针对等腰三角形教学设计过程概述:由于教学过程内容较多,以下仅介绍本节课的设计思路及需要注意的几点
(1)、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
(2)、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
(3)、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
(4)、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。注意方面:教学设计需要设计出在具体的教学环节中,体现教学设计的一般过程:引入新课、学习新知、应用新知、课堂小结、布置
作业等五个环节。应设计出运用怎样有效的教学方法、实施哪些必要的教学手段、采取何种的交流方式等去完成教学目标。教学过程的设计要具体且具有可操作性。
论证的学习从以下几个方面展开:
1、在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理的思考与表达;
2、在积累了一定的活动经验与图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。
应该注意的方面:
1、在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;
2、应注重对证明本身的理解,而不追求证明的数量和技巧。证明的要求控制在《数学课程标准》所规定的范围内。
3、正确理解《数学课程标准》中关于“空间与图形”的教学内容标准,这是我们实际进行教学设计的标尺。
以《等腰三角形》的教学案例为例,教学设计一般要重点关注以下几个方面:、教学内容的研究:教学设计时应明确课堂教学中要产生哪些新的知识点,分析这些知识在数学体系中的地位和作用,了解它们与学生已有的知识间有着怎样的联系与区别。
在《等腰三角形》教学案例中,通过对教学内容的研究,明确了本节课是在轴对称基础上学习特殊三角形(多边形的一种特殊形式)的性质及应用,它是数学《空间和图形》的一个重要内容。这节课首先从现实形象引入、进而利用已经学习的“轴对称”知识结合现实生活实际总结、形成等腰三角形的概念;同样,对等腰三角形的学习及应用又是以后学习三角形及有关平移、全等形等知识的重要前提知识。
在具体设计学生学习等腰三角形的概念和探索它的基本性质的教学环节时,根据教学内容,把握“生活----数学----生活”的设计原则,不仅可以使学生感受到等腰三角形、对称性与实际生活密切相关,增强对图形欣赏的意识。、对学生状况的研究:教学过程中的教学设计还应考虑到学生的学习能力、接受能力、空间想象能力等。应分析学生的知识基础、认知能力、学习习惯等,这样才能有针对性地制定出恰当的教学目标,才能选取有效的教学方法和教学手段进行我们的教学。
在了解本节课教学内容后,由于等腰三角形是七年级学生所要学习的内容,而对于他们来说,空间思维能力有限。因此,利用轴对称的立体变换、重合等空间想象过程来理解等腰三角形底边中线、垂直线、顶角平分线三线合一的性质时有一定的困难。因此,教学过程中应根据这种具体情况采用启发讲授、小组讨论、合作探究相结合的教学方式。坚持“教师为
主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程。
针对于对图形、图像的需要还可以将教学教学信息化充分利用起来:充分利用多媒体课件,动态、形象的进行从“轴对称”的知识转化到等腰三角形的知识上来,比如“互相重合”的动态演示等等。这样可以充分的调动学生的学习积极性,并把他们吸引到课堂上来。、教学目标的制定:
本节的教学目标如下:理解等腰三角形的相关概念,两个定理的理解及应用。理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,学会归纳、总结一些有益的结论。体会数学的对称美,体验团队精神,培养合作精神。
注意事项:教学目标要具体要多用些显性化的动词,如:使学生能识别 ……,让学生在经历 ……的过程中获得 ……,使学生会做 ……,使学生能解决 ……的问题等等。、教学重点难点的确定:
在认真分析本节课的数学本质及学生的思维障碍的前提条件下,设计出突出重点、突破难点的具体的方式方法。突出教学内容中最核心、最本质的部分。通过对教学内容的研究,确定本节课的教学重点;通过对学生状况的研究,确定本节课的教学难点。
《等腰三角形》中等腰三角形概念的理解以及三线合一的理解、识记是本节课的教学重点,而等腰三角形三线合一的具体应用、等腰三角形图形组合的观察,总结和分析。是本节课的教学难点。、针对等腰三角形教学设计过程概述:由于教学过程内容较多,以下仅介绍本节课的设计思路及需要注意的几点
(1)、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
(2)、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
(3)、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
(4)、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。注意方面:教学设计需要设计出在具体的教学环节中,体现教学设计的一般过程:引入新课、学习新知、应用新知、课堂小结、布置作业等五个环节。应设计出运用怎样有效的教学方法、实施哪些必要的教学手段、采取何种的交流方式等去完成教学目标。教学过程的设计要具体且具有可操作性。