第一篇:羟基磷灰石的制备与表征终稿解读
实验二十四 羟基磷灰石的制备与表征
生物材料是当今材料和医药领域的一个重要组成部分和发展方向,羟基磷灰石(Ca10(PO4)6(OH)2,HAP)是一种最重要的无机生物材料,人工合成的羟基磷灰石材料与生物体组织具有良好的相容性,并能与骨组织形成骨性结合,是人体骨、齿等硬组织最主要的成分,在诊断、治疗或替换机体中的组织、器官或增强功能等应用中是不可缺少的材料。纳米羟基磷灰石可作为环境材料、吸附材料、催化材料等方面具有广泛前景。
一、实验目的
1.设计实验路线,制备羟基磷灰石生物材料; 2.了解液相法制备羟基磷灰石的基本原理; 3.掌握液相法制备羟基磷灰石的工艺特点。
二、实验原理
水热合成法指在一个密闭的压力容器内,以水溶液为反应介质,通过对反应容器加热,使得在通常情况下,难溶或不溶的物质溶解并重结晶。该方法的优点:(1)产物直接为晶态,无须烧结晶化,避免了烧结过程团聚的发生;(2)粒度均匀且形态规则,改变反应条件能够得到不同的晶体结构和结晶形态的产物;(3)随着水热合成温度的提高和时间的延长,晶粒发育愈完整;(4)省去了高温燃烧和球磨,从而避免了杂质掺入和结构缺陷等。
在水热反应中,尿素作为均相沉淀剂和提供碱性环境的试剂,式
(1)和(2)所示发生分解反应:
反应的初始 pH值设为3.00±0.05,随着尿素的不断分解,体系的 pH 值不断增加。由磷酸钙溶液中各结晶相的溶解度曲线[1]可知,磷酸钙盐体系除了稳定相HA以外,还有 TCP, OCP, DCPA和DCPD 等结晶相。结晶过程中,pH值及 Ca2+和PO43−的浓度会引起结晶相的互相转变,pH值越大,HA的过饱和度就越大,就越易成核并长大。在由尿素分解产生的碱性条件下,Ca(NO 3)2·4H2O 和KH2PO4·3H2O 发生化学反应最终生成羟基磷灰石。反应方程如式(3):
不同的实验条件下获得实验产物有不同的影响,因此我们需要探究不同条件变化对实验结果的影响,以期通过控制实验的条件获得某种特定要求的产物,例如某些比表面积较大的、具有特定形貌的可以做为催化剂的载体等。因此需要进行不同实验条件下的对比实验,来获得某些潜在的规律。
三、实验步骤 1.仪器药品
药品:Ca(NO3)2·4H2O(分析纯)、KH2PO4·3H2O(分析纯)、尿素(分析纯)、HNO3、稀氨水、乙醇(分析纯)、精密pH试纸。仪器:高压水热釜、烘箱、FTIR、TG、SEM、XRD。2.实验部分
按化学计量比将
Ca(NO3)2·4H2O(分析纯)、0.1KH2PO4·3H2O(分析纯)和5 倍于KH2PO4·3H2O 浓度的尿素(分析纯)溶于 50 mL去离子水中,强烈搅拌,使[P]=0.02~0.20 mol/L ;调节悬浊液的 pH值到3 以下并搅拌反应 15 min;进一步用HNO3 溶液和稀氨水溶液将悬浊液的 pH 值精确调节到3.00±0.05;在90~150 ℃于XJ-100 型高压水热釜中水热5~24 h 后冷却;随后洗涤并干燥。具体的实验方法如下:
一、水热反应温度对实验结果的影响
保持上述条件不变,不同温度下反应得到的产物可能不一样,有可能是HA,也可能是其他的物质,比如磷酸盐的其他相(如TCP、OCP、DCP等)。所以有必要设计一系列的温度梯度来讨论反应温度的影响,并采用热重分析和XRD晶相分析不同温度下的产物,与标准谱图对比。从而确定在什么样的温度范围内,实验才能得到我们语气的物质HA。分别设定温度梯度为:90℃、100℃、110℃、120℃、130℃、140℃、150℃,[P]=0.1 mol/L,【Ca/P】=1.67,反应12h,其他条件不变。
二、反应物浓度对实验的影响
反应物浓度对HA晶体的生长影响较大,尤其在晶体的尺寸和形
貌方面。因此研究不同反应浓度对实验的的影响是很有必要的。
在确定一个比较合适的温度范围后,在此温度范围内,保持其他实验条件不变,并且始终保持,设置反应物不同的浓度进行实验,具体如下:P的浓度分别为:0.02 mol/L、0.05 mol/L、0.10 mol/L、0.15 mol/L、0.20 mol/L,【Ca/P】=1.67,T=120℃,反应12h,其他实验条件不变,进行实验。得到不同反应浓度下的HA,采用SEM观察测试,比较浓度对HA晶体生长的影响。
三、水热时间对实验的影响
反应时间的不同对晶体的生长有很大的影响,所以很有必要探究一下在不同的反应时间下,得到的产物HA。比较并分析水热时间对产物的影响,确定一个合理的反应时间。具体如下:5h、10h、15h、20h、25h,[P]=0.1 mol/L、【Ca/P】=1.67,T=120℃,其他实验条件保持不变。表征分析不同的反应时间条件下得到的产物并比较。4.性能表征
1)用傅里叶变换红外光谱仪测试样品,获得红外光谱图与标准谱图对照,并采用热重分析对结果进行分析表征样品,初步判断制得样品是否为我们所求。
2)用X-射线衍射仪进行分析样品的晶体结构。
XRD总是用来测定晶体的结构、多晶体的相结构、晶粒大小、晶粒取向及其微结构等,是揭示晶体内部原子排列状况最有力的工具。其基本原理是布拉格方程:2dsinθ=nλ 式中:
n-----衍射的级数
θ-----入射角和反射角
λ-----波长
d-----相邻晶面的间距
测样制备:将样品充分细磨,使细度达到250-300目左右,然后采用专用样品盒和压制工具,反面压制成型。注意不需用力过大。
测定条件: XRD射线源采用的是铜靶,石墨单色器,测试时管电压为 40 kV,管电流为40 mA,步速为0.05(˚)/s,测试范围为 20˚到70 ˚。
3)扫描电镜对制备的粉末样品进行表征。
SEM制样时将样品与适量无水乙醇制成悬浮液,超声分散,喷金后再用扫描电镜观察其形貌,测试电压为25 kV。
四、结果与讨论 1.结果与分析
对上述的比较实验结果进行分析,得到一般性的定性的结论,并可以作为后续的工作的参考。
2.注意事项
1.注意调节合适的反应溶液的pH值; 2.注意Ca/P浓度的合理配比。
3.思考题
1.反应溶液的pH值为什么要选择在碱性范围?
2.如何利用TG和IR确定产物的组成?
五、参考文献
[1]陈万春,刘道丹,吕佩德,等.晶体溶解动力学实验方法研究[J].人工晶体学报, 1991, 20(2): 107− 112.CHEN Wan-cun, LIU Dao-dan, LÜ Pei-de, et al.A study of experimental method of kinetic s of crystal dissolution [J].Journal of Synthetic Crystals, 1991, 20(2): 107 − 112.[2]宋江凤,刘咏,张莹、水热法合成不同形貌的羟基磷灰石。粉末冶金材料科学与工程,2010 年10月 第15 卷第5 期。
[3] 付拴平 羟基磷灰石纳米粒子的制备与表征
《内蒙古工业大学》
读书的好处
1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文
5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。——颜真卿
7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到
9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。——陈寿
11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。——高尔基
14、书到用时方恨少、事非经过不知难。——陆游
15、读一本好书,就如同和一个高尚的人在交谈——歌德
16、读一切好书,就是和许多高尚的人谈话。——笛卡儿
17、学习永远不晚。——高尔基
18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向
19、学而不思则惘,思而不学则殆。——孔子
20、读书给人以快乐、给人以光彩、给人以才干。——培根
第二篇:外文翻译(中文)羟基石灰石制备和研究
纤维蛋白-磷灰石复合材料的仿生制备
摘 要:双向扩散的Ca和PO4的溶液加入到纤维蛋白凝胶中,在不同pH条件下和氟离子的浓度进行仿生矿化反应生成有机/无机模仿生物矿化复合材料。在这个系统中产生的矿物比在溶液矿化系统中产生的矿物具有较高的结晶度。在纤维蛋白凝胶中由于pH条件不同生成的矿物也不同,如下所示:当不受酸碱约束下获得的矿物是DCPD;当PH是7.4时,获得的矿物是DCPD和OCP的混合物;当PH是9.0时,获得的矿物是OPD和HAP的混合物。当氟离子浓度在2-500ppm变化时,在PH是7.4时,凝胶系统中产生的矿物也在改变,从OCP/HAP复合材料转变为HAP/ FAP复合材料。此外,所获得的矿物的结晶度随随氟离子在增加而增加,同时晶度和溶解度呈负相关关系。总之,我们建立了新的有机/无机复合材料合成方法,这种材料是由纤维蛋白和钙磷酸盐组成的,同时表明合成的矿物特征可由制备条件控制。
关键词:仿生材料,生物矿化,钙磷酸盐,水凝胶,氟离子
引 言
经过深入的研究表明,在骨组织工程学领域,有机或者无机的复合材料与骨组织具有良好的生物相容性,能够提高它们的机械性能和促进骨组织再生。大多数有机或无机复合材料都是几种简单的有机或无机材料经过复合制备的,但是模拟生物硬组织的复合材料的制备方法并没有被很好的介绍。
生物硬组织,例如骨骼和牙齿的釉质,是在细胞外基质(ECM)中钙磷酸盐环境中经过成核,晶体生长而形成的。例如,骨钙蛋白或者别的非胶原蛋白,是通过典型的I胶原质化学连接的,它们和羟基磷灰石(HAP)具有良好的生物相容性。在釉质的形成过程中,自我组成的纳米釉源蛋白调节磷灰石的晶体形态,因此,ECM扮演中重要的角色,它不仅提供场所供矿物结晶沉淀而且对于生物硬组织的生长能够控制生物矿物的成核,结晶形态和结晶方向。在多样的水凝胶方向,一些研究已经开始使用钙化系统和尝试了解基质蛋白在生物矿化过程中的作用。例如Boskey et al曾建立了动物胶和琼脂糖胶 的扩散系统,证明非胶原蛋白在HAP的制备过程中起到促进还是抑制作用。Hunter et al.曾使用丙烯酰胺凝胶 研究它在体外的矿化过程。因此在有机基质中矿物的形成被认为是模拟生物硬组织生长矿化方法的一种。这些有机或无机复合材料经过仿生过程制备可能对于骨组织工程学的研究有非常大的作用。但是在以上提到的凝胶系统中无机相的制备大多数是由结晶度低的磷灰石组成的。在骨组织工程中,控制好无机相在复合材料中的性能是非常必要的,这是因为材料在医学治疗应用上需要一些特别的性能如可吸收性。为了控制好这些无机材料的性能,我们尝试在不同条件下制备复合材料。
在HAP中加入氟化物能够提高材料的稳定性,这是通过在晶格中用氟离子取代氢氧离子。氟离子在血清中浓度为0–0.13 ppm,但是在骨组织中浓度提高到800ppm,釉质中达到350-1000ppm。因此,对于生物硬组织的生长过程中,氟化物在调节矿物性能上显然起到关键作用。除此之外,在矿化过程中,PH也是一个重要的因素。因此在矿化过程中,控制复合材料中无机性能这些因素都是非常重要的参数。
在组织工程学上使用纤维蛋白凝胶是非常有益的,这是因为它具有生物相容性和生物降解性。更重要的是纤维蛋白能够从个人的周围血提取,因此在这次研究中我们选择纤维蛋白作为有机成分。在这次的研究中,在不同的条件下,我们使用纤维蛋白凝胶进行体外矿化和研究在凝胶中生成的矿物的性能是为了获得无机成分在有机或无机复合材料中多样性的特点。
材料和方法
体外纤维蛋白凝胶的矿化过程
凝胶扩散系统的制备过程如下:纤维蛋白(4mg/mL)和凝血酶溶液(2.5单位/mL)以1:1比例混合均匀。取240μL溶液倒入聚乙烯试管(直径=8mm)在37。C保温箱中放置30分钟以便于凝胶。100 mM 的(CH3COO)2Ca.2H2O和60mM的 NH4H2PO4溶液以相反的方向倒入以制好的凝胶促进矿化作用,如图一所示。整个系统在保温箱内维持37。C放置3天。Ca溶液和PO4溶液初始PH分别为7.6和4.5.为了研究溶液PH在矿化过程中的影响,通过添加HCl和NaOH分别调节两个溶液的PH值到7.4和9.0.在每一个矿化情况下测定纤维蛋白凝胶的PH了解矿化前后PH的变化。研究氟化物在矿化作用中的影响,2-2000ppm HF被加入
。到PO4溶液中。为了控制整个溶液系统的矿化作用,在37C下25mL的Ca溶液直接倒入25mL的PO4mL。
矿化产品的评价
矿化作用后,将凝胶系统在室温下风干24h,然后将获得的产品用粉末X射线衍射分析法鉴定产品。(002)高度的一半值被认为是制的的矿物的结晶度指数。
矿物的沉淀现象和晶体的形态用扫描电子显微镜观察。对于扫描电子显微镜观察时,在以矿化的纤维蛋白凝胶中加入4%多聚甲醛,然后用磷酸盐缓冲溶液洗涤六次后在加入1%的OsO4再用磷酸盐缓冲溶液洗涤六次,最后用浓度达到100%de 乙醇进行脱水。凝胶用CO2在临界温度干燥45分钟
图1(A)示意图凝胶扩散系统:Ca2+和PO34-在凝胶系统中以相反的方向扩散到纤维蛋白胶,以促进凝胶矿化。(B)纤维蛋白凝胶的尺寸:8mm×3.4mm(直径×厚度):(a)纤维蛋白凝胶(b)矿化4小时(c)矿化3天
溶解度的测定
为了评价制的的样品的生物降解性,我们进行了体外溶解度测定实验。样品浸入到PH为4.8的浓度为0.1moL/L的10mL醋酸盐缓冲溶液中,在37。C下保温5天,剩下的样品被完全溶解在10mL的HCl溶液中,每个溶液中Ca离子的浓度使用先前描述的一种方法原子吸收的分光光度计测定。在凝胶中矿物的溶解度被定义为被洗提的 Ca 离子的含量与组成的凝胶中的初次的 Ca 含量的比值。
结果
体外纤维蛋白凝胶的矿化过程
矿化作用后,一个白色矿物沉淀(能带)在纤维蛋白凝胶中被观察了10 分钟,然而在矿化凝胶系统溶液中,当Ca溶液被滴加到PO4溶液中立即就观察到白色沉淀。最初,在纤维素凝胶的矿物沉淀被观察了在Ca 溶液被倒的区域(C 边), 和能带区域然后扩大为这PO4 溶液被倒的区域(P 边)。最后,4小时后凝胶体全变白了。如图1(B)
在矿化前凝胶的PH为6.61,在表一的条件下凝胶系统PH值在24小时后将会增加。
表一
矿化24小时后纤维凝胶系统的PH值
条件 PH值 矿化之前纤维凝胶 6.61 +_0.12 不受酸碱约束 5.14 + 0.15 PH为 7.4 6.09 + 0.20 PH为 9.0 6.48 +0.24
矿化产品的评价
利用XRD分析可以了解在不同PH条件下矿物性能。在矿化系统溶液在不受约束的酸碱质条件之下获得矿产品是二水磷酸氢钙(DCPD),在PH为7.4时获得的是 磷酸八钙(OCP)和羟基磷灰石(HAP)的混合物,在PH为9.0时,获得的也是OCP和HAP的混合物。在凝胶系统中,在不受约束的酸碱质条件之下获得矿产品是二水磷酸氢钙(DCPD),在PH为7.4时获得的是 磷酸八钙(OCP)和二水磷酸氢钙(DCPD)的混合物,在PH为9.0时,获得的也是OCP和HAP的混合物。如图2.(A)观察XRD的轮廓可知,在凝胶扩散系统中矿物的结晶产物明显高于在矿物溶液系统中产生的。
为了了解目前的氟离子对凝胶系统中对矿物产生的影响,因此,在不同的PH条件下分别向磷酸盐溶液中加入200ppm的氢氟酸,然后使用XRD方法研究在纤维蛋白凝胶系统中矿物的生成量。结果显示,在任何pH值下纤维蛋白凝胶系统中矿物的生成都为羟基磷灰石/氟磷灰石(FAP)的。此外,在每个样本中样品的结晶度没有明显差异,如图2(B)。为了进一步研究成矿条件,我们选择pH值7.4,这是因为这种条件与生物的环境条件相似。
在凝胶系统中,为了获得矿物成分的不同程度的结晶和溶解度,我们向凝胶成矿系统中添加了不同浓度的氟离子(2—2000ppm)。XRD分析表明,在不加氟离子的情况下,所产生的矿物是DCPD和OCP的混合物,在氟离子浓度达到20 ppm时,产物是OCP和HAP的混合物,并在氟离子浓度达到500 ppm时,产物是典型的HAP/ FAP的混合物。最后,X射线衍射图谱表明,在氟离子浓度超过500 ppm时,产生的矿物是HAP/ FAP的复合材料和氟化钙(CaF2)的混合物,如图3(A)。为了估计氟离子对矿物结晶的影响,结晶指数被认定为在(002)峰逆宽度的半值。当氟离子浓度达到100ppm时,结晶度明显提高并且氟离子浓度高于100ppm时,其饱和(图4)。当氟离子浓度从0到500ppm变化时,(300)反射峰位置转移到更高的角度,表明在矿物中FAP的成分也随着氟离子浓度增加而增加图3(B)。
为了了解在纤维凝胶系统中晶体的生长过程,在20 ppm的氟离子条件下获得了不同的时间点的以矿化的凝胶系统的扫描电镜图像。结果表明,在纤维蛋白凝胶系统中矿物发生矿化的一分钟后就会发生核化,以及随着时间,矿物晶体颗粒生长和转化为针状结构(图5)。为了鉴别氟离子对晶体形态的影响,在加入不同浓度氟离子后,经过三天的矿化我们获得晶体的扫描显微图像。随着氟离子浓度的增加,可发现彩带般的OCP的晶体数量减少。最后,当氟离子浓度200 ppm时,针状晶体FAP覆盖整个晶区,如图6
溶解度实验
每个样品的溶解度被定义为在矿化凝胶系统中钙离子被洗脱的含量与最初的钙含量的比值。和预期一样,溶解度随氟离子浓度增加而增加。(图4)
图二,(A)在不同的PH下,凝胶扩散和溶液系统中产生的矿物X射线衍射图;(A至C)在溶液系统中矿物:(a)不受酸碱约束条件 ;(b)PH=7.4;(c)PH=9.0;(d到f)在凝胶系统中矿物:(d)不受酸碱约束条件 ;(e)PH=7.4;(f)PH=9.0;(B)在氟离子量为200ppm时,在不同的PH下,凝胶扩散系统中产生的矿物的X射线衍射图:(a)不受酸碱约束条件 ;(b)PH=7.4;(c)PH=9.0。
图3(A)在pH值为7.4时,不同氟化物浓度所获得矿物的X射线衍射图(B)矿化产品的(300)X射线反射图:(a)没有氟离子(b)氟离子浓度2ppm(c)(d)20ppm(e)50ppm(f)200ppm(g)500ppm(h)1000ppm(i)2000ppm。
图4.当pH7.4 氟化物浓度不同时,在纤维蛋白胶中所获得的矿物的结晶度(■)和溶解度(●)。结晶度定义为在(002)峰逆半值宽度,在凝胶的矿物质溶解度定义为在复合凝胶中钙离子的洗脱的含量比最初的钙含量。
讨论
为了改善有机/无机复合材料的机械性能,生物降解性,在过去的几十年中,生物相容性,许多研究已经开始进行了。本次研究中,我们建立了一个制备有机/无机纤维蛋白的方法:通过使用钙溶液和PO4溶液双向扩散方式制成纤维蛋白胶。我们也证明了这种复合材料的矿物相的特征可通过改变pH值和氟离子的浓度而控制。
首先,我们比较了在凝胶扩散系统和溶液系统中形成的矿物特征。在凝胶扩散系统中生成的矿物的结晶度比在溶液中生成系统中较高。纤维蛋白胶是由一个个小纤维网络结构组成的,在凝胶系统中这种结构可能减轻离子扩散速率和促进晶体增长。在不含氟离子的情况下,在凝胶扩散系统中,当不受酸碱约束下获得的矿物是DCPD;当PH是7.4时,获得的矿物是DCPD和OCP的混合物;当PH是9.0时,获得的矿物是OPD和HAP的混合物。以前的报告表明DCPD合成的最适当的pH值条件是酸性的,对于OCP,它是中性偏弱酸性,对于HAP,它是中性偏弱碱性。在矿化期间,凝胶系统的pH值下降可能是由于目前产生的结果造成的。
虽然当PH为9.0时,在矿化中可以获得羟基磷灰石类矿物,但是获得的矿物的结晶度仍然很低。为了控制生成的矿物结晶度,我们研究了在凝胶系统中氟离子对矿化作用的影响。有趣的是,当氟离子浓度为200 ppm时,无论PH值为多少,X射线衍射轮廓表明HAP/ FAP的类均具有高的结晶度。这一结果表明,氟离子可促进磷灰石晶体的稳定性和抑制以形成的晶体的变形和水化。
由于在生物硬组织中氟离子的浓度较高,而且在牙釉质形成期阶段氟离子的吸收量也是最高的。我们的结果也证实了猜想:在生物矿化过程中,增强羟基磷灰石生物矿化的结晶度,氟化物含量是一个关键因素。然后,我们研究了在凝胶系统中氟离子浓度对矿物形成的影响。随着氟离子浓度从2-500的增加,凝胶系统中矿物特征也在改变,从在OCP/HAP复合材料到HAP/ FAP复合材料。随后,当氟离子的浓度超过500ppm时,凝胶系统中将会形成氟化钙。在有机/无机复合材料中控制无机相的结晶度和溶解度将有利于其降解调控,因为纤维蛋白胶具有生物降解性能。为了了解这种复合材料的结晶度和溶解度之间的关系,我们研究了当氟离子的浓度(0-200 ppm)变化时,该材料不同的矿物形成的溶解度。所获得的矿物结晶度随着氟离子浓度的增加而提高,以及溶解度表现出与结晶度负相关的关系。
在骨组织再生过程中,最重要的是要控制新植入骨组织的生物降解性材料的生物降解性。我们建立了一种新的仿生材料制备方法,纤维蛋白和钙磷酸盐复合。并显示矿物的特征和结晶度可以有制备条件控制。这种有机/无机材料在矿化过程中多样的特征将有助于理想的骨组织再生过程控制其生物降解性以配合适的治疗。
图5,在pH7.4,氟化物浓度为20 ppm时,晶体生长的扫描电镜图像,(A)纤维蛋白凝胶;B)1分钟矿化后;(C)30分钟矿化后;(D)6小时矿化后。
图6,在pH7.4,氟化物浓度为不同时矿物晶体的扫描电镜图像:(A)0 ppm,(B)2 ppm,(C)20ppm,(D)200 ppm
第三篇:多孔c、Fe纳米复合材料的制备及表征
多孔C / Fe纳米复合材料的制备及表征 引言
活性炭具有孔隙发达、高比表面积、耐腐蚀、环境友好的特性,主要应用于气体吸附、水处理和催化载体等领域.近年来活性炭越来越多应用于一些新领域,例如储氢、超级电容、燃料电池等.但是由于活性炭由非晶碳构成,其内部结构零乱而不规则,因而电子不能够自由移动,导电性差,这限制了其在电化学、能源领域的应用.而石墨化程度高的碳(例如石墨、炭黑、碳纤维等)较非晶炭具有更完善的晶体结构,从而具有更为优良的导电性和热稳定性.因此,具有石墨化结构的多孔碳既拥有比表面积大、吸附能力强的特点,又具有优良电化学特性,受到越来越多的关注.1.1制备方法的提出与分析
现阶段制备含有石墨结构的多孔碳的方法主要有三种:一是以聚合物塑料、橡胶或有机物为原料, 并向其中添加一定的发泡剂再通过2200~3000超高温度烧结的方法制备;二是模板法,即利用硅胶、Al2O3、沸石等多孔材料为模板,通过气相沉积、溶胶凝胶等方法多次复合碳先驱体,随后通过酸洗、高温烧结等制备石墨多孔碳.方法三是膨胀石墨法,即以天然鳞片石墨为原料,与浓硫酸、重铬酸钾等作用后瞬间高温加热,石墨层间化合物急剧分解和气化,从而形成疏松多孔的石墨材料.这些方法能在一定尺度范围内较为有效地调控孔隙及孔径分布,但制备工艺复杂、耗时长且对设备要求高.本工作提出一种简单有效的制备含有石墨结构的多孔碳的新方法:选择合适的孔径分布的商用活性炭为原材料,通过真空浸渍工艺引入纳米铁颗粒,在较低温度下催化多孔碳使其原位自生出石墨纳米结构,从而制备出C/Fe纳米复合材料.2、实验过程
1.1制备
C/Fe纳米复合材料的制备过程如图1所示.实验采用活性炭粉末(Activated Carbon, AC)(国药沪试,AR)为原料,将其浸渍于硝酸铁盐溶液(1mol/L),先使用超声清洗仪超声振荡1h,再将其静置48h,之后将溶液滤去,过滤所得固体在80℃下烘干.将烘干后的粉末研磨,并过筛(~74um)后,置于真空烧结炉(ZRX-12-11,上海晨华电炉厂)内烧结.烧结炉的真空度为1×10-5Pa,升温速度为5℃/min,烧结目标温度为700、800、900和1000,在温度达到目标温度后恒温1h再自然冷却至室温.所得样品标记为C/Fe-x,(x为烧结温度(℃)).将C/Fe纳米复合材料置于10%盐酸溶液中振荡2h,再用去离子水清洗至中性,如此反复5次,除去C/Fe纳米复合材料中的Fe粒子.1.2表征
采用高分辨透射电镜(HRTEM)(JEOL JEM2010)研究C/Fe纳米复合材料的微观结构.利用X射线衍射(XRD)仪R igaku RINT2000 system(35kV,200mA)对样品进行物相分析,XRD试验采用Cu靶K辐射,步进式扫描,步长0.02°,扫描角度20°~90°,入射波长=0.154056nm.采用77K氮吸附等温线(ASA P2010 型测试仪)测试样品的孔径分布,并通过Brunauer-Emmett-Teller(BET)方程式计算比表面积,以孔径体积和BET比表面积计算平均孔径.采用Perk in-Elmer TGA-7系列热重分析系统在氮气气氛中进行热重分析,实验采用的升温速度为20℃/min.图 1
1C /Fe纳米复合材料制备过程
Fig.Fabrication process of the C/Fe nanocomposite
2结果与讨论
2.1 C/Fe纳米复合材料的微观结构
通过检索JCPDS ICDD 标准卡片标定样品XRD谱图中的衍射峰.图2为活性炭、浸渍
处理后的活性炭以及C/Fe-800纳米复合材料的衍射谱图.如图2a所示226,和43°处的宽峰分别对应碳(002)和(100)晶面,这说明活性炭结晶程度低,主要由非晶碳构成;如图2b所示,浸渍过硝酸铁并干燥后的活性炭主要由非晶态的碳和铁的水合氧化物FeO(OH)组成;而经过800℃高温处理后,如图2c C/Fe-800所示, 在226处的衍射峰表示炭的石墨化结构形成,244处的尖峰表示铁主要以a-Fe形式存在,此外还含有少量渗炭体Fe3C.图3为不同温度热处理所得C/Fe纳
米复合材料的XRD图谱,从图中可以发现,随着热处理温度的升高,244处所对应的a-Fe(110)晶面衍射峰强且尖,说明其结晶度良好.通过Bragg公式计算各真空热处理温度下所得样品的(002)晶面间距(表1),可以发现随着温度的升高,晶面间距d(002)逐渐向理想石墨结构0.3354nm靠近,这说明碳的石墨化程度也愈高.F ig.1
活性炭、浸渍处理后的活性炭以及 C/Fe 800的 XRD图谱
F ig.2
XRD patterns of activated carbon,activated carbon i
根据Franklin和Harris等的研究,活性炭主要由无定形碳中的难石墨化的碳(non graphitizingcarbon)构成,难石墨化的碳是由非平面的五元碳环、六元碳环等构成的石墨微晶组成,这些石墨微晶结构形状不规则且杂乱无序,即使采用3000°C以上的高温处理也无法转变成有序的石墨化结构.而本研究中,由XRD的结果(图3)可以发现,活性炭在700°C 时便出现了石墨化结构.为了进一步研究C/Fe纳米复合材料的微观结构,对C/Fe纳米复合材料进行高分辨透射电镜观察.图4为高分辨透射电镜(HRTEM)照片.如图4(a)所示,活性炭中的石墨微晶弯曲形成微孔碳,以杂乱不规则的形态存在.图4(b)(c)显示的是活性炭经过超声浸Fe(NO3)3后的透射电镜照片.如图所示,硝酸铁盐溶液中的铁离子与氢氧根离子进入了活性炭丰富的孔道之中,并以鳞片状的针铁矿形式固定下来,并均匀分散于非晶态的碳基体中.在随后的高温热处理过程中,针铁矿与周围的非晶碳发生反应,产生C/Fe纳米复合结构(图4(d)~(f)).如图4(d)所示,纳米铁粒子均匀分布于碳基体中,颗粒直径约为20~50nm,表明针铁矿经过高温热处理在活性炭还原作用下形成了a-Fe纳米颗粒.进一步对图4(d)中的铁纳米颗粒结构分析,见图4(e),纳米铁颗粒被石墨层包裹,并环绕数量众多的碳纳米带.这些碳纳米带宽度在1~20nm之间,并向非晶碳基体内和外空间弯曲伸展,相互交叉连接形成碳纳米带网络结构.进一步对碳纳米带研究发现,如图4(f)所示,碳纳米带具有明显的石墨层状结构特征.2.2 C/Fe纳米复合材料孔结构表征
为了研究C /Fe纳米复合材料微观结构的变化对活性炭孔结构及分布的影响,进行了氮吸附测试.表2为活性炭、酸处理前后的C/Fe纳米复合材料的BET比表面积、孔隙容积以及平均孔径,图5为活性炭、酸处理前后的C/Fe纳米复合材料的孔径分布.如表2所示, 商业活性炭孔径主要分布在2~3nm的 介孔范围,BET比表面积为 1906㎡/g.制备所得的C/Fe纳米复合材料比表面积和平均孔径随温度的上升而下降,C/Fe-700的BET比表面积降为645㎡/g,孔隙容积下降至0.441cm/g,平均孔径上升至2.736nm, 直径为2~3nm的孔径比例大幅减少.如图5(a)所示,随着热处理温度升高,C/Fe纳米复合材料孔径分布从2~3nm向10nm左右的较大孔径偏移,平均孔径逐渐上升,比表面积下降明显.这主要因为活性炭经过浸渍和烧结,原活性炭中的小孔被铁粒子占据,活性炭-铁界面处的碳参与还原铁的反应而消耗, 并且由于碳的石墨化过程,原活性炭中部分不规则多孔的无定型碳转变成密实的石墨结构.如表2和图5所示,C/Fe纳米复合材料经过酸洗后的样品BET比表面积较未酸洗的样品提高约200m/g,20~50nm范围孔径比例均有所提升,这说明铁纳米粒子的尺寸主要集中在20~50nm,与TEM结果一致.以上结果表明,利用控制热处理工艺的方法可以在一定范围内调整C/Fe纳米复合材料的孔径分布,这在超级电容的应用过程中至关重要.Qu和Salitra等的研究表明,不同电解质的超级电容需要不同孔径分布的多孔碳材料, 例如对于简单的无机水合离子电解质溶液, 多孔碳的孔径需大于0.5nm;对于BF-4 离子电解质溶液, 孔径需大于2nm;对于(C2H5)4N+ 离子电解质溶液, 孔径需大于5nm.而本研究可以在一定范围内调整C /Fe 纳米复合材料的孔径分布, 故在超级电容电极应用中具有一定优势.332.3 C/Fe纳米复合材料的微观组织形成机理
图6为C /Fe纳米复合材料的热重分析实验(室温至800)结果.在开始阶段(< 100), 随着温度的上升, 活性炭和浸渍过铁盐的活性炭都有不同程度的重量损失, 活性炭质量损失17w%t , 浸渍过铁盐的活性炭质量损失28w%t , 这部分损失属物理脱水过程.如图6(c)所示, 当温度超过80
时, 随着热处理温度进一步升高, 活性炭出现稳定的重量损失度平台, 质量不再随温度上升而明显减少, 当热处理温度超过550
后开始出现连续失重, 800
时的失重率约为42w%t , 说明实验采用的活性炭本身含有少量杂质, 在室温至800的热处理过程中会逐渐分解释放出部分小分子化合物.如图6(a)所示, 浸渍处理过的活性炭在100~ 800
呈现近似线性的连续失重, 800
时的失重率约为92w %t , 这部分失重主要包括250~ 500
之间铁的水合氧化物中结晶水的受热分解失重和铁的还原反应产生的损失.相关反应如下: 2FeO(OH) Fe2O3+ H2O(1)2Fe2O3+ 3C 4Fe + 3CO2(2)
研究表明, 纳米尺度的过渡金属(Fe、N i、Co)颗粒能催化非晶碳形成石墨结构[ 20].在本实验中, 通过浸渍铁盐而在活性炭基体内形成的铁水合氧化物在随后的真空升温过程中, 首先脱水并被碳还原成纳米尺度的金属铁粒子, 然后再将原活性炭基体中的非晶碳催化石墨化, 并形成碳纳米结构.目前对于过渡金属催化形成碳纳米结构的机理有着诸多的研究[ 2123] , 通常认为碳纳米管等碳纳米材料的生长机制都是通过碳原子在催化剂颗粒中的扩散、析出两个阶段来实现的.由于过渡金属颗粒对碳原子具有很强溶解能力[ 24] , 碳是直接以原子形式溶入金属铁颗粒中, 随着温度升高,越来越多的碳溶解到金属中, 并在一定程度时达到超饱和状态, 一部分碳原子开始在金属颗粒表面析出,随着金属颗粒中的碳饱和程度加剧, 金属颗粒表面析出的碳形成了线性和多边形结构, 进而导致碳纳米结构形成.根据TEM 照片所示包裹特性, 本实验纳米金属颗粒催化非晶碳形成碳纳米带的原理符合#溶解出∃模型.但对于碳纳米带在固态非晶碳里的延伸生长的过程还有待进一步研究.3
结论
本文提供了一种以活性炭为原材料, 通过简单的真空浸渍工艺引入金属铁粒子, 并结合真空高温热处理制备含有多孔石墨结构的C /Fe纳米复合材料的新方法.活性炭在铁纳米粒子的催化下, 在700便出现了石墨化结构.随着温度的升高, 碳的石墨化程度也愈高.Fe以纳米粒子的形式均匀分布于碳基体中, 并被石墨层包裹, 环绕延伸出碳纳米带.这些碳纳米带宽度在1 ~ 20nm 之间, 并相互交叉连接形成碳纳米带网络结构.C /Fe复合材料继承了原活性炭的多孔结构, 孔径主要分布在介孔范围.C /Fe700的BET 比表面积为645m/g, 孔隙容积为0.441cm/g,平均孔径为2.736nm.利用控制热处理工艺的方法可以在一定范围内调整C /Fe纳米复合材料的孔径分布.32
第四篇:AES实验报告-材料分析与表征
清华大学材料学院
xxx xx xxxxxxxx
《材料分析与表征》
俄歇电子能谱(AES)实验报告
学院:材料学院
班级:xxx 姓名:xx 学号:xxxxxxxx 一.实验目的
1.了解俄歇电子能谱的背景知识和基本原理; 2.了解俄歇电子能谱的基本实验技术及其主要特点; 3.了解俄歇谱仪的基本结构和操作方法; 4.了解俄歇电子能谱在材料表面分析中的应用。
二.实验原理
1.AES简介
俄歇电子能谱,英文全称为Auger Electron Spectroscopy,简称为AES,是材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析的一种有效的手段。俄歇电子能谱仪具有很高表面灵敏度,通过正确测定和解释 AES 的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等信息。
当原子的内层电子被激发形成空穴后,原子处于较高能量的激发态。这一状态是不稳定的,它将自发跃迁到能量较低的状态——退激发过程,存在两种退激发过程:一种是以特征X射线形式向外辐射能量——辐射退激发;另一种通过原子内部的转换过程把能量交给较外层的另一电子,使它克服结合能而向外发射——非辐射退激发过程(Auger过程)。向外辐射的电子称为俄歇电子。其能量仅由相关能级决定,与原子激发状态的形成原因无关,因而它具有“指纹”特征,可用来鉴定元素种类。
2.俄歇效应
处于基态的原子若用光子或电子冲击激发使内层电子电离后,就在原子的芯能级上产生一个空穴。这一芯空穴导致外壳层收缩。这种情形从能量上看是不稳定的,并发生弛豫,K空穴被高能态L1的一个电子填充,剩余的能量(EK-EL1)用于释放一个电子,即俄歇电子。如图1所示。
清华大学材料学院
xxx xx xxxxxxxx
图1 固体KLL俄歇作用过程示意图[1]
俄歇过程是一三电子过程,终态原子双电离。俄歇电子用原子中出现空穴的X射线能级符号次序表示,俄歇过程可以用图2表示:
图2 俄歇过程图示
通常俄歇过程要求电离空穴与填充空穴的电子不在同一个主壳层内,即W≠X。若W=X≠Y,称为C-K跃迁(Coster-Kronig跃迁),(p>i),如L1L2M;若
清华大学材料学院
xxx xx xxxxxxxx
W=X=Y 称为超C-K跃迁,(p>i q>i),如N5N6N6。
俄歇过程根据初态空位所在的主壳层能级的不同,可分为不同的系列,如K系列L系列,M系列等。同一系列中又可按参与过程的电子所在主壳层的不同分为不同的群,如K系列包含KLL、KLM、KMM等俄歇群。每一群又有间隔很近的若干条谱线组成,对于KLL俄歇系列,根据其终态,可以分为:KL1L1,KL1L2,KL1L3,KL2L2,KL2L3,KL3L3六种类型。因为,根据粒子的全同性,无法分辨KL3L1和KL1L3,以及KL2L3和KL3L2等。这样,在俄歇谱上,表现为六根谱线。但这并不影响分析。因为俄歇分析主要利用主要的峰进行。不需要搞清楚每个小峰。而且商品仪器的分辨率也不高,但是在理论上有意义。
元素H和He是不能发生俄歇跃迁的。3.俄歇电子能量
用来作表面分析的俄歇电子的能量在0~2000 eV之间。俄歇谱仪是根据俄歇电子的能量来识别元素的,也就是说,俄歇电子的能量带有元素本身的信息。所以,准确知道俄歇电子的能量很重要。实用上,俄歇电子能量可以准确查到,无需进行计算。例如:Perkin-Elmer公司的俄歇手册上,对于每一种元素,有一张俄歇图谱,表标明了主要俄歇峰的能量。
考虑孤立原子,假设原子序数为Z,跃迁为WiXpYq。有如下公式成立:
EWXYEWZEXZEYZ
实际上,对于有空位的壳层,能级同充满时有所不同。
'EYZEYZEYZ1'EYZEYZEYZ1EYZ
EWXYEWZEXZEYZEYZ1EYZ其中0<<1,为修正系数。
跃迁WiXpYq同跃迁为WiYpXq是同一种俄歇跃迁,无法分辨。则: WiXpYq跃迁:EWXYEWZEXZEYZEYZ1EYZ WiYpXq跃迁:EWYXEWZEYZEXZ'EXZ1EXZ 因为EWXY(Z)=EWYX(Z),作为一种半经验近似,可以取上述两式的平均
清华大学材料学院
xxx xx xxxxxxxx
值作为俄歇电子的能量,并且取=„=1。此时有:
11EWXYZEWYXZEWZEZ1EZEYZ1EYZ,XX22这种估算结果和实际测量的结果很接近。
对于固体材料,如果不考虑涉及价带的俄歇过程,则俄歇电子还要克服逸出功才能发射出去。因此,俄歇电子的能量为:
11EWXYZEWYXZEWZEZ1EZEYZ1EYZs XX22s是材料的逸出功,即费米能及至真空能级的能量差。
另外,由于从样品中发射出去的俄歇电子,到达分析仪器后才能分析。由于两者之间存在着接触电位差,俄歇电子的能量还要损失: a-s,其中a为分析器材料的逸出功。所以,最终俄歇电子的能量为:
11EWXYZEWYXZEWZEZ1EZXX2EYZ1EYZa 2由于设备材料的逸出功已知,所以可以很容易的知道俄歇电子的能量。如果俄歇过程涉及到价带,由于价带有一定的宽度,则俄歇峰会变宽。原因是:设价带的宽度是△Ev,当X,Y位于价带顶与X,Y位于价带底,则峰宽至少为2△Ev。
另外:H不可能发生俄歇过程,He一般也不能发生俄歇过程。Li的KLL俄歇过程其实就是KVV过程(V代表价带)。
利用俄歇电子的能量可以定性判断元素的种类。4.俄歇电流的计算
假设一次电子能量为Ep,束流为Ip。入射方向与固体表面垂直。假定能量分析器只能接受出射方向与表面法线方向夹角在范围内的电子。这样的电子处于立体角内。特作如下近似:
⑴ 只有深度在3cos范围内产生的俄歇电子,才对俄歇电流有贡献。在此区域内,Ep与Ip保持不变。ni表示表面i元素的单位体积原子数。
⑵ 俄歇电子的发射方向是各项同性的。能量分析器所接收的占方向总数的/4,近似等于能量分析器的传输率。
清华大学材料学院
xxx xx xxxxxxxx
IA0IPQWniPWXY4ZcosedZIQnPcos PWiWXY4QW是电离截面。PWXY表示产生WiXpYq俄歇跃迁的几率。Z是到表面的垂直距离。
上式中未考虑背散射电子的贡献,因而是不准确的。一次电子轰击材料的表面,会遇到弹性和非弹性散射。其中有的一次电子,经过一次或者多次散射后被散射回来。这就是背散射电子。假如背散射电子的能量大于EW,也能使得Wi能级的电子电离,促使俄歇跃迁发生。这样,就增强了俄歇电流。定义B为“背散射增强因子”。
另外,表面粗糙度对俄歇电流也有影响。光滑表面比粗糙表面俄歇电流大。定义R为“表面粗糙度因子”,R一般不大于1。最后有:
IABRsecIPniPQWXYW4cos 入射角度与表面法线成角。
5.俄歇电子能谱仪
在实用的俄歇谱仪(图3和图4)中,一次电子束的能量 Ep通常为3 keV~10 keV。用来分析的俄歇电子的能量一般在0~2000 eV左右。一般说来,对于原子序数低的原子,用KLL线;中等时用LMM线,高序数用MNN线,更高的用NOO线。
图3俄歇电子能谱仪原理示意图
三.实验仪器及样品的制备
清华大学材料学院
xxx xx xxxxxxxx
仪器名称:AES电子能谱仪
仪器型号:美国 Physical Electronics, Inc公司生产, PHI-700型(如图4)主要技术指标:
1.主真空室:5×10-10 Torr 2.SEM 解析度:<6 nm 3.分析能量解析度:<0.5% 4.分析深度:<0.5 nm 5.探测极限:1 at.‰
俄歇电子能谱仪要在高真空下工作。俄歇电子能谱仪的分析方法有:化学价态分析,微区分析,界面分析;实验方法:点分析,深度剖析,线分析和面分析。俄歇电子能谱的应用主要包括以下方面,表面清洁、表面吸附和反应、表面扩散、薄膜厚度、界面扩散和结构、表面偏析,化学态分析、失效分析、材料缺陷、摩擦润滑、催化剂和原位真空断裂。俄歇电子能谱仪可以分析固体样品和液体样品,但固体样品需要预处理;样品必须保持洁净、防止污染,需要碰样品时必须戴上一次性手套;对于挥发性样品、表面污染样品及带有微弱磁性的样品需要进行预处理;样品的尺寸不需要太大,只要宏观肉眼可见即可[2]。
图4 PHI-700型俄歇电子能谱仪结构示意图
四.俄歇电子能谱在材料分析中的应用
俄歇电子能谱在材料表面分析中具有重要的应用,具体举例如下: 1)材料失效分析。通过分析断口的化学成分和元素分布,从而了解断裂的原因。
2)表面元素定性分析。俄歇电子的能量仅与原子弹轨道能级有关,而与入
清华大学材料学院
xxx xx xxxxxxxx
射电子能量无关。AES技术可以对除 H、He以外的所有元素进行全分析。俄歇电子能谱的采样深度很浅,一般金属材料为 0.5~2.0 nm,有机物为 1.0~3.0 nm。
3)表面元素半定量分析。样品表面出射俄歇电子强度与样品中该原子的浓度有线性关系,利用该关系可以进行元素的半定量分析,但一般不能给出分析元素的绝对含量,仅能提供元素的相对含量。
4)表面元素价态分析。虽然俄歇电子的动能主要由元素的种类和跃迁轨道决定,但由于原子外层轨道电子的屏蔽效应,内层能级轨道和次外层轨道上电子结合能,在不同化学环境中不一样,而有一些微小差异。
5)表面元素分布分析。通过面分析,可把某个元素在某一区域内的分布以图像方式表示出来。把表面元素分布分析与俄歇化学效应结合起来,还可以获得化学价态分布图。
参考文献
[1] 周玉, 武高辉编著.材料分析测试技术 [M].哈尔滨工业大学出版社, 1998 [2] 张录平, 李晖, 刘亚平.俄歇电子能谱仪在材料分析中的应用 [J].分析仪器, 2009, 4.
第五篇:减水剂的性质与表征
一、固体含量
(按照GB/T-8077 2000《混凝土外加剂匀质性测试方法》)1.1方法提要
将已恒量的称量瓶内放入被测试样于一定的温度下烘至恒量 1.2仪器
a.天平不应低于四级,精确至0.0001g;b.鼓风电热恒温干燥箱:温度范围0℃~200℃ c.带盖称量瓶:25mm×65mm; d.干燥器:内盛变色硅胶 1.3试验步骤
1.3.1将洁净带盖称量瓶放入烘箱内,,100℃~105℃烘30min,取出置于干燥器内,冷却30min后称量,重复上述步骤直至恒量,其质量为m0 1.3.2将被测试样装入已经恒量的称量瓶内,盖上盖称出试样及称量瓶的总质量为m1.试样称量:固体产品1.000g~2.000g;液体产品3.0000g~5.000g.1.3.3将盛有试样的称量瓶放入烘箱内开启瓶盖升温至100℃~105℃(特殊品种除外)烘干,盖上盖置于干燥器内冷却30min后称量重复上述步骤直至恒量其质量为 1.4结果表示 固体含量X固按下式计算:
m2-m0100 m1-m0
X固式中:X固——固体含量,%; m0——称量瓶的质量,g;
m1——称量瓶加样的质量,g;
m2——称量瓶加烘干后试样的质量,g。1.5允许差
室内允许差为0.3%; 室间允许差为0.50%。
二、水泥净浆流动度
(参照混凝土减水剂质量标准和试验方法JGJ56-84)
1、方法提要
在水泥净浆搅拌机中,加入一定量的水泥,外加剂和水进行搅拌.将搅拌好的净浆注入截锥圆模内,提起截锥圆模,测定水泥净浆在玻璃平面上自由流淌的最大直径.2、仪器
a.水泥净浆搅拌机;b.截锥圆模:上口直径36mm,下口直径60mm,高度为60mm,内壁光滑无接缝的金属制品;c.玻璃板:400mm400mm5mm;d.秒表;e.钢直尺:300mm;f.刮刀;g.药物天平:称量100g,分度值0.1g;h.药物天平:称量1000g,分度值1g.3、试验步骤
3.1将玻璃板放置在水平位置,用湿布擦抹玻璃板,截锥圆模,搅拌器及搅拌锅,使其表面湿而不带水渍.将截锥圆模放在玻璃板的中央,并用湿布覆盖待用.3.2称取水泥300g,倒入搅拌锅内,加入推荐掺量的外加剂及87g或 105g水,搅拌3min.3.3将拌好的净浆迅速注入截锥圆模内,用刮刀刮平,将截锥圆模按垂直方向提起,同时开启秒表计时,任水泥净浆在玻璃板上流动,至30s,用直尺量取流淌部分相互垂直的两个方向的最大直径,取平均值作为水泥净浆流动度.4、结果表示
表示净浆流动度时,需注明用水量,所用水泥的强度等级标号、名称、型号及生产厂和外加剂掺量。
5、允许差 室内允许差为5mm; 室间允许差为10mm。
6、测试掺量对净浆流动度的影响
三、减水率
(参照混凝土减水剂质量标准和试验方法JGJ56-84)
1、净浆减水率 1.1仪器设备
a.软练水泥净浆搅拌机;b.跳桌(附5mm厚玻璃板);c.截锥圆模:上口直径为65mm,下口直径为75mm,高为40mm;d.刮刀、捣棒和游标卡尺或钢直尺(300mm)1.2试验步骤
1.2.1将截锥模置于附有玻璃板的跳桌上.(预先用湿布擦过,并用湿布覆盖)。
1.2.2称取水泥400g,放入湿布擦过的搅拌锅内,加水搅拌加入的水量使基准水泥净浆扩散度达140~150mm。搅拌三分钟,迅速装入截锥模内,稍加插捣赶出气泡,并抹平表面,将截锥模垂直向上提起以每秒一次的速度使跳桌跳动三十次,然后量取互相垂直的两直径,取两个数的平均值,当扩散度为140~150mm时的用水量为基准水泥净浆用水量(W0)。
1.2.3再称取水泥400g,以同样的方法测定掺减水剂后水泥净浆扩散度为140~150mm时的用水量即为减水后水泥净浆用水量W1。1.3试验结果处理
净浆减水率按下式计算 净浆减水率(%)=
W0W1100 W0式中W0——基准水泥净浆扩散度为140~150mm时的用水量(g);
W1——掺减水剂后水泥净浆扩散度为140~150mm时的用水量(g)。
减水率值取三个试样的算术平均值。
2、混凝土减水率 2.1仪器设备 a.坍落度筒; b.捣棒;
c.小铲、钢板尺、抹刀等。2.2试验步骤
2.2.1测定基准混凝土的塌落度,记录达到该塌落度时的单位用水量(W0)。
2.2.2在水泥用量相同,水泥、砂、石比例保持不变的条件下,测定掺减水剂的混凝土达到与基准混凝土相同塌落度时的单位用水量(W1)。
2.2.3试验结果处理 减水率按(1)式计算:
减水率(%)W0W1W0100
式中 W0---基准混凝土单位用水量(kg/m3);W1---掺减水剂的混凝土单位用水量(kg/m3).四.泌水率
(参照混凝土减水剂质量标准和试验方法JGJ56-84)
1、仪器设备
a.容重筒:取内径18.5cm,高20cm,容积为5升的容重筒,带盖(或玻璃板);b.磅称:称量50kg、感量50g; c.具塞量筒100mL; d.其它:吸液管、定时钟、铁铲、捣棒及抹刀等。
2、试验步骤
2.1容重筒用湿布润湿,称重G0;
2.2将混凝土拌合物一次装入筒中,在振动台上振动二十秒,然后用抹刀将顶面轻轻抹平,试样表面比筒口边低2cm左右。
2.3将筒外壁及边缘擦净,称出筒及试样的总重G1,然后将筒静置于地上,加盖,以防止水分蒸发。
2.4自抹面开始计算时间,前60分钟每隔10分钟用吸液管吸出泌水一次,以后每隔20分钟吸水一次,直至连续三次无泌水为止。吸出的水注入量筒中,读出每次吸出水的累计值,准确至毫升。
2.5每次吸出泌水前5分钟,应将筒底一侧垫高约2厘米,使筒倾斜,便于吸出泌水,取出泌水后仍将筒轻轻放平盖好。
3、试验结果处理
泌水率按下式计算:
B(%)=
Vw100(2)
(W/G)GwGwG1G0
式中 B---泌水率(%);
Vw---泌水总量(g);
W---混凝土拌合物的用水量(g); G---混凝土拌合物的总重量(g);
Gw---试样重量(g); G0---筒重(g)。泌水率值取三个试样的算术平均值。如其中一个与平均 值之差大于平均值的20%时,则取二个相近结果的平均值。
泌水率比按下式计算: 泌水率比=
掺减水剂的混凝土泌水率(3)
基准混凝土泌水率
五、凝结时间(贯入阻力法)
(参照混凝土减水剂质量标准和试验方法JGJ56-84)
1、仪器设备
a.贯入阻力仪:最大负荷为120kg,精度0.5kg,附有可拆装的贯入度试针两个。其断面积分别为1cm2和0.2cm2.b.砂浆容器:容器要求坚实,不透水、不吸水、无油渍,截面为圆形或方形,直径或边长为15cm,高度为15cm。c.吸管。
d.筛子:孔径为5mm。e.计时钟。
2、试验步骤 2.1试验步骤
a.将混凝土拌合物通过5mm筛,振动筛出的砂浆装在经表面湿润的塑料盆内。
b.充分拌匀筛出砂浆,装入砂浆容器内,在震动台上震2~3秒钟,置于202℃室温条件下。2.2贯入阻力测试 a.在初次测试贯入阻力前,清除试样表面的泌水,然后测定贯入阻力值,先用断面为1cm2的贯入度试针,将试针的支承面与砂浆表面接触,在10秒钟内缓慢而均匀地垂直压入砂浆内部2.5cm深度,记录所需的压力和时间(从水泥与水接触开始计算),贯入阻力值达3.5N/mm2(35kgf/cm2)以后,换用断面为0.2的贯入度试针,每次测点应避开前一次的测试孔,其净距为试针直径的2倍,至少不小于1.5cm,试针距容器边缘不小于2.5cm。
b.在202℃条件下,普通混凝土贯入阻力初次测试一般在成型后3~4小时开始,以后每隔1小时测定一次。掺早强型减水剂的混凝土一般在成型后1~2小时开始,以后每隔半小时测定一次,掺缓凝型减水剂的混凝土,初测可推迟到成型后4~6小时或更多以后每隔1小时进行一次,直至贯入阻力略大于28N/mm2(280kgf/cm2).3、试验结果处理
3.1贯入阻力按(4)式计算
PAP贯入阻力=(kg/cm2)
A贯入阻力=101(N/mm2)(4)
式中 P---贯入深度达2.5cm时所需的净压力(kg);
A---贯入度试针断面面积(cm2)。
3.2以贯入阻力为纵坐标,测试时间为横坐标,绘制贯入阻力与时间关系曲线。3.3以3.5N/mm2(35kgf/cm2)和28 N/mm2(280kgf/cm2)划两条平行横坐标的直线,直线与曲线交点的横坐标值即为初凝和终凝时间。3.4试验精度
试验应固定人员及仪器,每盘混凝土拌合物取一个试样,三个试样为一组,凝结时间取三个试样的平均值,试验误差值应不大于平均值的30分钟,如不符合要求应重做。
六、抗压强度试验
(参照混凝土减水剂质量标准和试验方法JGJ56-84)
1、立方体抗压强度试验步骤应按下列方法进行: ①试件从养护地点取出后应及时进行试验,将试件表面与上下承压板面擦干净。
②将试件安放在试验机的下压板或垫板上,试件的承压面应与成型时的顶面垂直。试件的中心应与试验机下压板中心对准,开动试验机,当上压板与试件或钢垫板接近时,调整球座,使接触均衡。③在试验过程中应连续均匀地加荷,混凝土强度等级 2、立方体抗压强度试验结果计算及确定按下列方法进行: 2.1混凝土立方体抗压强度应按下式计算: fF A式中 f——混凝土立方体试件抗压强度(MPa); F——试件破坏荷载(N); A——试件承压面积(mm2)。 混凝土立方体抗压强度计算应精确至0.1MPa。2.2强度值的确定应符合下列规定: ①三个试件测值的算术平均值作为该组试件的强度值(精确至0.1MPa); ②三个测值中的最大值或最小值中如有一个与中间值的差值超过中间值的15%时,则把最大及最小值一并舍除,取中间值作为该组试件的抗压强度值; ③如最大值和最小值与中间值的差均超过中间值的15%,则该组试件的试验结果无效。 2.3混凝土强度等级<C60时,用非标准试件测得的强度值,均应乘以尺寸换算系数,其值为对200mm200mm200mm试件为对1.05;对100mm100mm100mm试件为0.95.当混凝土强度等级≥C60时,宜采用标准试件;使用非标准试件时,尺寸换算系数应由试验确定。 七、抗渗性能试验 (参照《普通混凝土长期性能和耐久性能试验方法GBJ82-85》)1.本方法适用于测定硬化后混凝土的抗渗标号。2.抗渗性能试验应采用顶面直径为175mm,底面直径为185mm,高度为150mm的圆台体或直径与高度均为150mm的圆柱体试件(视抗渗设备要求而定)。 抗渗试件以6个为一组。 试件成型后24h拆模,用钢丝刷刷去两端面水泥浆膜,然后送入标准养护室养护。试件一般养护至28d龄期进行试验,如有特殊要求,可在其它龄期进行。 1.混凝土抗渗性能试验所用设备应符合下列规定: (1)混凝土抗渗仪 应能使水压按规定的制度稳定地作用在试件上的装置。 (2)加压装置 螺旋或其它形式,其压力以能把试件压入试件套内为宜。 2.混凝土抗渗性能试验应按下列步骤进行 (1)试件养护至试验前一天取出,将表面晾干,然后再其侧面涂一层熔化的密封材料,随即在螺旋或其它加压装置上,将试件压入经烘箱预热过得试件套中,稍冷却后,即可解除压力,连同试件套装在抗渗仪上进行试验。 (2)试验从水压为0.1MPa(1kgf/cm2)开始。以后每隔8h增加水压0.1Mpa(1kgf/cm2),并且要随时注意观察试件端面的渗水情况。(3)当6个试件中有3个试件端面呈有渗水现象时,即可停止试验,记下当时的水压。(4)在试验过程中,如发现水从试件周边渗出,则应停止试验,重新密封。 混凝土的抗渗标号以每组6个试件中4个试件未出现渗水时的最大压力计算,其计算式为: S = 10H – 1 式中 S———抗渗标号; H———6个试件中3个渗水时的水压力(Mpa)。 八、分子量的测定(凝胶色谱法) 1、简介 分子量及分子量分布是高分子材料最基本的结构参数之一,聚合物的基本性质是分子量的多分散性,聚合物的性质与其分子量分布密切相关,因此平均分子量及分子量分布对减水剂的性能影响很大。测量分子量方法很多,有溶液渗透压法,沸点升高法、冰点降低法测数均分子量,还有根据溶液的光散射能力与体系大分子质量有关方法测重均分子量;依据溶液的粘度与体系分子数目、分子大小及分子形态有关,可以测粘均分子量及分子尺寸。聚合物是分子量不均一的分子,用平均分子量与分子量分布可以表征一个多分散体系不同分子量分子的相对含量,质谱和凝胶色谱方法是使用现代仪器快速、准确检测的较常用方法,质谱法主要通过聚合物分子降解方法推断相对分子量和确定分子式,凝胶色谱方法则依据聚合物溶液中溶质分子大小不同分离。 凝胶色谱方法以溶剂作为流动相,以多孔性填料作为分离介质的柱色谱,是目前表征聚合物平均分子量和分子量分布最有效的手段之一。当溶剂以一定的速度流过色谱柱,不同大小的分子以不同的速度通过柱子而得到分离,最大的溶质分子首先流出,最小溶质分子最后流出,流出体积等于填料之间的空隙。 凝胶渗透色谱图是用检测器获得流出曲线,通过纵坐标记录洗提液与纯溶剂折光指数差值,相当于洗提溶液的相对浓度,以横坐标记录洗提体积,因此,洗提体积大时溶质分子则较小,反之亦然。非水溶性凝胶渗透色谱法,样品经过异丙醇沉淀、丙酮脱水处理,消除溶解在水中的部分小分子,而水溶性凝胶渗透色谱法(GPC)可以直接测定水溶性聚合物的分子量,如对聚氧化乙烯基醚的分子量测定等。聚羧酸系减水剂为水体系聚合物,必须使用水作流动相进行检测,检测减水剂聚合物的平均分子量与分子量分布。 最常见的几种平均分子量表示方法为数均分子量Mn、重均分子量Mw、Z 均分子量Mz、Z+1 均分子量Mz+ 1、粘均分子量Mp 等,除粘均分子量通过粘度与分子量的经验公式求出外,其它分子量的定义相似,如在一个多分散体系中有许多不同分子量的组分,假如分子量为M1、M2、M3…Mi 的各组分,各有N1、N2 …Ni的摩尔数量,则: 大分子的多分散性常以分布曲线和多分散指数等两种方式表示。凝胶色谱的积分分布曲线为累计重量分布函数;从微分分布曲线可以直观地看出聚合物分子量分布状况。Mw/Mn 比值作为多分散指数,可以根据分子量分布计算相对分散指数。 2、样品制备与GPC 仪器设备(1)样品制备 由于聚羧酸系减水剂的分子结构中有大量的离子型基团,减水剂与常用的有机溶剂三氯甲烷、四氢呋喃、异丙醇等不能相溶,即使经过异丙醇、丙酮等多次分离沉淀再真空脱水处理,制得的样品很难与三氯甲烷、四氢呋喃等有机溶剂完全相溶,所以不能使用三氯甲烷、四氢呋喃作溶剂体系的GPC 方法测新型减水剂MPC 的分子量和分子量分布;用水溶性凝胶渗透色谱法(GPC 方法)可以准确测定聚羧酸系减水剂的分子量,对样品的制备要求较低。本试验直接使用标准型MPC- 1、缓凝型MPC-2 进行干燥,在60℃条件下烘干得到浓缩干燥样品,基本上保持原有减水剂的分子量分布特点。(2)水相体系GPC 法的有关仪器设备 仪器设备为美国Waters 510/Milenium 2010 及Waters 600E/M32 分析/半制备系统,型号为510×2-996-410,采用Waters 公司生产的凝胶色谱柱,流动相为水相体系,主要规格及技术指标如下:600E 四元梯度泵,流速范围0.1~19.9ml/min;510 注射泵,流速范围0.1~9.9ml/min;996 二极管阵列检测器,检测波长范围190~800nm。通过996 二级管阵列检测器同时进行多波长检测,在190~800nm 之间快速扫描,可以获得三维色谱光谱流出曲线,三维图象分别以时间、波长和吸收值为坐标,分析结果通过使用M32 软件对三维谱图进行光谱或色谱的各种运算获得。 3、检测结果与分析 九、红外吸收光谱测量 1、简介 红外光照射物质时,物质分子吸收一部分光能使分子的振动和转动状态的变化,而产生的吸收谱带,则简称为红外光谱(IR)。红外光谱通常以波长或波数为横坐标,吸收度或百分透过率为纵坐标,谱图中反映整个分子的结构特征,不同化合物都有不同的谱图,结构中不同官能团的存在则产生对应的特征谱带,是有机化学研究中最常用的方法之一。根据红外光谱推测结构,红外光谱可以分为特征官能团区(4000~1350 cm-1)和指纹区(1350~600 cm-1),官能团区包括O-H、N-H、C-H、C=O、C=N 等的伸缩振动,指纹区则为C-O、C-N与C-X 等弯曲振动,-OH、–NH2 和–C=O-等振动可以在红外光谱图的高能端(1350~3600cm-1)找到。在官能团区一般分为4000~2500 cm- 1、2500~2000 cm-1和2000~1337 cm-1 等三个频率;指纹区分为1333~900 cm-1 和900~600 cm-1 两频率。有关官能团吸收峰数据,如下表,具体分析如下:①4000~2500cm-1 存在含氢原子的官能团伸缩振动,如OH(3700~3200 cm-1)、COOH(3600~2500cm-1)、NH(3500~3300 cm-1);烯氢、芳氢(3100~3000 cm-1)、C-H(3000 cm-1);甲基、亚甲基(2950~2850 cm-1)等吸收峰。② 2500~2000 cm-1 吸收峰表征C=-C或C=-N 等三键存在。③2000~1337 cm-1 存在含双键的化合物:酸酐、酰卤、酯、醛、酮、羧酸、酰胺、醌、羧酸离子的C=O 伸缩振动大致按上述顺序由高到低出现在1870~1600 cm-1 区,并且都是强峰;C=C、C=N、N=O 及烯芳含氮杂环硝基化合物也在这一区域,一般在1600 cm-1 以下,C=C 若对称结构则吸收峰极弱。④ 1333~900 cm-1 存在包括C-O、C-N、C-F、C-P 等单键的伸缩振动吸收和C=S、S=O、P=O 等双键伸缩振动吸收以及C(CH3) 3、RCH=CH2 和RCH=CHR’的骨架变形振动,这一吸收区域反应化合物本身特征性,称为指纹区。⑤900~600 cm-1 可指示(CH2)4 的存在及双键和苯环的取代位置、取代程度及构型等。 表3-2 不同官能团的吸收峰位置 基团 化合物类型 吸收频率范围cm-1 基团 化合物类型 吸收频率范围cm-1 O-H 醇 3200-3600 C=C 烯 1600~1680 羧酸 3000~3500 芳香烃 1400~1600 N-H 胺 3300~3500 C=O 醛 1720~1740 C-H 烷烃 2850~3000 酮 1705~1715 烯烃 3020~3080 羧酸 1700~1750 芳香烃 3000~3100 酯 1725~1730 醛基 2700~2800 酰胺 1640~1700 2、试验仪器与样品制备 试验使用Perkin-Elmer 公司生产的仪器富里叶变换红外和拉曼光谱仪,仪器型号为Spectrum GX,或采用Nicolet 公司的20SXB 型傅立叶红外光谱仪测定。 样品为各种单体材料和不同的聚羧酸系减水剂,测试样品根据实际情况选择不同制样方法。无水液体试样直接加一滴在盐片(大约直径25,厚度5)上制成薄膜,用同样板片盖上,放在测试支架上测定板间薄膜的光谱;固体样品采用压片法,1 份试样与20 份溴化钾碾磨,在室温和真空下用210MPa 压力成型直径10mm,厚度1~2mm 的压片,压片成型为晶片;对于能够溶解于挥发性有机溶剂的固体样品,采用溶剂溶解法,滴加在测量盐片上干燥成膜再测试;聚羧酸系减水剂水溶液样品,先经过异丙醇、丙酮的沉淀和分离,在搅拌下将聚合物溶液(最多含5%聚合物)倾入到过量的(4~10 倍量)溶剂中,重复沉淀。在60℃浓缩一定时间后再真空抽滤,尽可能除去水份,因为在3300 及1640 cm-1处水有强的吸收,另外还影响盐基片的稳定性,应加热软化后涂抹在氯化钠盐片。制样的浓度和厚度最好使百分透过率或吸收度在20~60%范围内,基线在90~95%,最强的吸收谱带在1~20%之间。 3、试验结果讨论 红外谱图反映整个分子结构中有不同的官能团存在的特征,不同化合物都有不同的红外光谱。因此可以通过光谱分析,了解聚羧酸系减水剂不同原材料及减水剂本身分子结构的不同官能团特征。 十、吸附量测定(紫外光谱) 1、简介 紫外-可见吸收光谱是分子吸收紫外-可见光区100~800nm 的电磁波而产生的吸收光谱,简称紫外光谱(UV)。由于近紫外区的光谱涉及绝大多数有机分子的共扼价电子能量跃迁范围,因此对分子结构鉴定十分重要。通常有机化合物的价电子包括成键的σ-电子、成键的π-电子和非键电子,可能发生σ→ σ*、π→ π*、n →σ*、n →π*等跃迁。紫外光谱以吸收波长对吸收强度作图得到吸收曲线,根据吸收波长及峰的强弱可以估计共扼键的类型;由于吸光度与样品的浓度成正比,紫外光谱可用于鉴定聚合物溶液的浓度。 lgI0AAabc a Ibc式中,I0:入射光强度,I:透射光强度,A:吸光度,a:吸光系数,b:样品池宽度,c:样品浓度。 2、试验仪器与样品制备 试验使用UV2100 紫外-可见分光光度计(UV),波长范围190-850nm,对新聚羧酸高效减水剂作紫外光谱试验。定性试验则可以控制吸收谱带的最大吸光度在5.5 以内,为测水泥浆中减水剂的吸附率,需要标定样品的浓度,在谱图中控制吸收谱带的最大吸光度在0.3~1.0 内,则可准确定量试验样品的浓度。 用50 mL 容量瓶分别准确配制一定浓度减水剂溶液作为原液, 分别准确称取8 g水泥放到50mL的烧杯中, 取32mL 不同浓度的减水剂溶液加入烧杯中, 混合摇匀3m in, 静置一定时间, 使其达到吸附平衡, 取上层清液, 用LDZ4-018A型台式离心机分离10m in(4000 r /m in),稀释分离液。用UV-2100紫外分光光度计测定其浓度, 根据前后溶液的浓度差计算吸附量。 3、试验结果与讨论 十一、ζ电位的测量 1、仪器: JS94H2 电泳仪 2、水泥浆体的ζ电位测定 将减水剂配成0.2%、0.4%、0.6% 和0.8% 的水溶液, 然后将水泥掺入溶液中, W/ C 为100, 取悬浮液测水泥颗粒的ζ电位;按照GB/ T 1346-2001 测定水泥凝结时间, 在不同时间取相同质量的水泥浆, 分散于一定质量的去离子水中, W/ C 约为100, 测水泥粒子的电ζ位。 3、分析不同掺量聚羧酸系减水剂对水泥颗粒表面电位ζ的影响: 得到某个掺量下的减水剂溶液可以补充吸附于水泥粒子的表面, 维持较低的电位ζ,则表明该减水剂分子与水泥粒子相容性较好, 饱和吸附量较高。