第一篇:初二数学证明题测试
例
1、如图,AB∥CD,且∠ABE=120°,∠CDE=110°,求∠BED的度数。
例
2、已知,∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC
求证:BD∥GE∥
AH
例
3、如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C。求证:∠A=∠
F
例
4、如图,AB∥CD,直线MN分别交AB,CD于E,F,EG平分∠BEF,FG平分∠EFD.求证:EG⊥FG
例
5、如图,线段AM∥DN,直线l与AM,DN分别交于点B,C,直线l绕BC的中点P旋转(点C由D点向N点方向移动)
(1)线段BC与AD,AB,CD围成的图形在初始状态下,形状是△ABD(即△ABC),请你写出变化过程中其余的各种特殊四边形的名称。
(2)任取变化过程中的两个图形,测量AB,CD的长度后,分别计算每一个图形中的AB+CD(精确到1厘米),比较这两个和是否相等,试说明理由。
【模拟试题】(答题时间:30分钟)
一、选择题
1.如图1,AB∥CD,则下列结论成立的是()A.∠A+∠C=180° B.∠A+∠B=180°C.∠B+∠C=180° D.∠B+∠D=180°
(1)(2)(3)(4)
2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是()A.相等B.互补C.相等或互补D.相等且互补
3.如图2,∠B=70°,∠DEC=100°,∠EDB=110°,则∠C等于()A.70° B.110°C.80°D.100° 4.如图3,下列推理正确的是()
A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NBD.∵MC∥ND,∴∠1=∠3 5.如图4,AB∥CD,∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.80°D.65°
二、填空题
1.如图5,已知AB∥CD,∠1=65°,∠2=45°,则∠ADC
=________.(5)(6)(7)(8)
2.如图6,已知∠1=∠2,∠BAD=57°,则∠B=________.3.如图7,若AB∥EF,BC∥DE,则∠B+∠E=________.4.如图8,由A测B的方向是________.三、解答题
1.已知:如图9,AD∥BC,∠B=∠D.求证:AB∥CD.(9)(10)(11)(12)2.已知:如图10,∠1=∠B,∠A=32°.求:∠2的度数.3.已知:如图11,AD∥BC,∠B=∠C,求证:AD平分∠EAC.4.如图12,A、B之间是一座山,要修一条铁路通过A、B两地,在A地测得铁路走向是北偏东58°11′.如果A、B两地同时开工开隧道,那么在B地按北偏西多少度施工,才能使铁路隧道在山腹中准确接通?
第二篇:初二数学证明题
初二数学证明题
1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE,证明BD=EC+ED
.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE
解:作CH⊥AB于H交AD于p,∵在Rt△ABC中AC=CB,∠ACB=90°,∴∠CAB=∠CBA=45°.∴∠HCB=90°-∠CBA=45°=∠CBA.又∵中点D,∴CD=BD.又∵CH⊥AB,∴CH=AH=BH.又∵∠pAH+∠ApH=90°,∠pCF+∠CpF=90°,∠ApH=∠CpF,∴∠pAH=∠pCF.又∵∠ApH=∠CEH,在△ApH与△CEH中
∠pAH=∠ECH,AH=CH,∠pHA=∠EHC,∴△ApH≌△CEH(ASA).∴pH=EH,又∵pC=CH-pH,BE=BH-HE,∴Cp=EB.在△pDC与△EDB中
pC=EB,∠pCD=∠EBD,DC=DB,∴△pDC≌△EDB(SAS).∴∠ADC=∠BDE.2证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,∴OE=OF.(问题在这里。理由是什么埃我有点不懂)
∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形
过点O作OD⊥AB于D
过点O作OE⊥AC于E
再证Rt△AOD≌Rt△AOE(AAS)
得出OD=OE
就可以再证Rt△DOB≌Rt△EOC(HL)
得出∠ABO=∠ACO
再因为∠OBC=∠OCB
得出∠ABC=∠ABC
得出等腰△ABC
41.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证
(过F作FM⊥AH于M,△ADE全等于△MEF证好了)
2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACpQ
1)若DE⊥BC,求证:E是NQ的中点
2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ
3)若F是Mp的中点,FG⊥BC于G,求证:2FG=BC
3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G
求证:1)AE=AG(这个证好了)2)四边形AEFG是菱形
第三篇:初二数学几何证明题
1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC且与AB的延长线交与点E,求证四边形AECD是等腰梯形?
6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。求证:EF=BE+DF
第四篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第五篇:数学证明题
数学题The mathematics inscribe
在梯形ABCD中,AD∥BC,AC垂直BD,若AD=2,BC=8,BD=6,求(1)对角线AC的 长。(2)梯形的面积。
梯形
解: AC于BD交接点为O 设OC=x,OA=y,OD=z,则BO=6-y,三角形而AOD以AD为底得高h1,三角形BOC以BC为底的高h2.,因为AC垂直BD,AD=2,BC=8,BD=6。故AOD和BOC都为直接三角形,根据面积法得出两个①等式三角形AOD(2h1=yz),②三角形BOC(8h2=(6-z)x).③三角形BDC(6x=8(h1+h2))根据勾股定理求的2个等式,④y^2+z^2=4,⑤x^2+(6-z)^2=64 ,由①②③解得x=4y,通过这个x,y的关系带入④⑤可以解得z=6/5,y==8/5,x=32/5,h1=24/25,h2=96/25 ,故梯形的高位 24/5。则 AC=8.梯形面积为(2+8)*24/5*1/2=24在-44,-43,-42,…0,1,2,3,…2005,2006 这一串连续整数中,前100个数的和是多少?方法一 解:前100个数的和=-(1+2+----------------------+44)+(0+1+2+3+-----------------+55)
=-(1+44)*44/2+(1+55)*55/2=550方法二 解:前100个数的和
已知p[-1,2],点p关于x轴的对称点p1,关于直线y=-1的对称点为p2,关于直线y=3的对称点为p3,关于直线y=a的对称点为p4,分别写出p1,p2,p3,p4的坐标,从中你发现了什么规律?选择题 给出任意个选项,再把正确答案的序号填在括号里,而不是正确答案,但自己首先要算出正确答案,再把正确选项的序号填在括号里。(一般在答题卡是涂
“A”,“B”,“C”或“D”)例如:x+y=3 2x=y x=(1)y=(2)A1;2 B2;1 C0;0 D无解
要看清楚是不是直接写得数,如果是,就不能写过程,不是直接写得数的要写出过程,初学者过程要求详细,学的时间久些就可以适当简略些。记得要写“解”(特别是解方程),在考试时这样的题目因为解失分很不值,也要尽量不让它失分。
算完再验算一下。直接将得数代入即可。
没有太多规律,可能是图形,也可能是统计图,但是重点还是7个字:审好题,反复检查。应用题在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。实际应用也就是有关于数学与生活题目。初中一年级学生刚刚进入少年期,机械记忆力较强,分析能力仍然较差。鉴此,要提高初一年级数学应用题教学效果,务必要提高学生的分析能力。这是每一个初一数学老师值得认真探索的问题。笔者在应用题教学中采用以下分析方法,取得了较好的效果。应用题主要是把正确的答案用不同的方法解决出来,并写出解题过程,多做这样的题目可以让人们的思维变得更好。注意要写答句和单位!