第一篇:初一数学平行线经典练习提高题
平行线作业题
1姓名
1、如图1,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()
A、10°B、15°C、20°D、30°ABβ EBP CD
D CD
图1图2图
32、如图2,AB//CD,且A25,C45,则E的度数是()
A.60B.70C.110D.803、如图3,已知AB∥CD,则角α、β、γ之间的关系为()
(A)α+β+γ=1800(B)α—β+γ=1800(C)α+β—γ=1800(D)α+β+γ=36004、如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。(选择一种辅助线)
5、如图,若AB∥CD,猜想∠A、∠E、∠D之间的关系,并证明之。
AB
E DC6、如图,AB∥CD,∠BEF=85°,求∠ABE+∠EFC+∠FCD的度数。
AB E F D7、如图,∠ABC+∠ACB=110°,BO、CO分别平分∠ABC和∠ACB,EF过点O与BC平行,求∠BOC。
OF
8、如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α。
AB
1DE9、已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.BA
M
N
C10、.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么? CD
FE
AB11、如图,DB∥FG∥EC,A是FG上的一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求∠PAG的度数。_ D _ E
_ B
_ C _ _ GP
第二篇:初一数学平行线测试题
初一数学平行线测试题
一、选择题
1.在同一平面内,两条直线可能的位置关系是()
(A)平行.(B)相交.(C)相交或平行.(D)垂直.
2.判定两角相等,不正确的是()
(A)对顶角相等.
(B)两直线平行,同位角相等.
(C)∵∠1=∠2,∠2=∠3,∴∠1=∠3.
(D)两条直线被第三条直线所截,内错角相等.
3.两个角的两边分别平行,其中一个角是60°,则另一个角是()
(A)60°.(B)120°.
(C)60°或120°.(D)无法确定.
4.下列语句中正确的是()
(A)不相交的两条直线叫做平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)两直线平行,同旁内角相等.
(D)两条直线被第三条直线所截,同位角相等.
5.下列说法正确的是()
(A)垂直于同一直线的两条直线互相垂直.
(B)平行于同一条直线的两条直线互相平行.
(C)平面内两个角相等,则他们的两边分别平行.
(D)两条直线被第三条直线所截,那么有两对同位角相等.
6.已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有((A)5个.(B)4个.(C)3个.(D)2个.
(第6题图)
二、填空题
7.如果a∥b,b∥c,则______∥______,因为________.
8.在同一平面内,如果a⊥b,b⊥c,则ac,因为
9.填注理由:
如图,已知:直线AB,CD被直线EF,GH所截,且∠1=∠2,试说明:∠3+∠4=180°.
A解:∵∠1=∠2()
3C
4又∵∠2=∠5()
H∴∠1=∠5()
∴AB∥CD()
2∴∠3+∠4=180°(51BD))
10.如图,直线a、b被直线c所截,且a∥b,若∠1=118°,则∠2=
三、解答题
11.如图,从正方形ABCD中找出互相平行的边.12.已知:如图,∠1=40°,∠2=65°,AB∥DC,求∠ADC数.
D
A
D
B
和∠A的度
C
13.已知:如图AD∥BE,∠1=∠2,求证:∠A=∠E.
AB
D
E
14.如图,根据下列条件,可以判定哪两条直线平行?并说明判定的依据.(1)∠1=∠CA
(2)∠2=∠4
(3)∠2+∠5=180°F
(4)∠3=∠B5E
(5)∠6=∠2 21 CB
15.已知:如图,∠1=∠4,∠2=∠3,求证:l1// l2.
l4
l1
l2
l3
16.已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.
E
GA
B
C
ODK
FH
17.已知:如图,CD平分∠ACB,AC∥DE,CD∥EF,试说明EF平分∠DEB.
A
D
F
C
B
E
18.如图,CD∥BE,试判断∠1,∠2,∠3之间的关系.
A
C3B
19.已知:如图, AB∥DF,BC∥DE,求证:∠1=∠2.
A
E
D
B
第三篇:初一数学[平行线]测试题
腾飞教育 初一数学下学期平行线测试题
1初一数学平行线测试题
一、选择题
1.在同一平面内,两条直线可能的位置关系是()
(A)平行.(B)相交.(C)相交或平行.(D)垂直.
2.判定两角相等,不正确的是()
(A)对顶角相等.
(B)两直线平行,同位角相等.
(C)∵∠1=∠2,∠2=∠3,∴∠1=∠3.
(D)两条直线被第三条直线所截,内错角相等.
3.两个角的两边分别平行,其中一个角是60°,则另一个角是()
(A)60°.(B)120°.
(C)60°或120°.(D)无法确定.
4.下列语句中正确的是()
(A)不相交的两条直线叫做平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)两直线平行,同旁内角相等.(D)两条直线被第三条直线所截,同位角相等.
5.下列说法正确的是()
(A(B
(C(D
6.已知AB∥CD∥EF,BC∥AD,那么图中与∠AGE相等的角有()
(A)5个.
(B)4C)3个.(D)2个.
二、填空题
7.如果a∥b,b∥c,则______∥______,因为________.
8.在同一平面内,如果a⊥b,b⊥c,则ac,因为
9.填注理由:
如图,已知:直线AB,CD被直线EF,GH所截,且∠1=∠2,试说明:∠3+∠4=180°.
A解:∵∠1=∠2()C3又∵∠2=∠5()
4∴∠1=∠5()H
∴AB∥CD()
2∴∠3+∠4=180°()
51BD
腾飞教育 初一数学下学期平行线测试题
210.如图,直线a、b被直线c所截,且a∥b,若∠1=118°,则∠2=
三、解答题
11.如图,从正方形ABCD中找出互相平行的边.12.已知:如图,∠1=40°,∠2=65°,AB∥DC,求∠数.
和∠A的度
13.已知:如图AD∥BE,∠A=∠E.
D
E
14.如图,根据下列条件,可以判定哪两条直线平行?并说明判定的依据.(1)∠1=∠CA
(2)∠2=∠4
(3)∠2+∠5=180°F
(4)∠3=∠B5E
(5)∠6=∠2 21 CB
16.已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.
腾飞教育 初一数学下学期平行线测试题 3
E
GA
B
C
ODK
FH
17.已知:如图,CD平分∠ACB,AC∥DE,CD∥EF,试说明EF平分∠DEB.
A
D
F
C
B
E
18B
第四篇:初一数学下册平行线教案
志航教育七年级数学下册
第五章平行线
概念
平行公理及推论
判定方法
知识点详解
知识点一平行线的概念及表示
(1)概念
(2)特征
(3)注意
例
一、下列说法正确的是()
A不相交的两条直线是平行线B在同一平面内,两条直线的位置关系有两种 C在同一平面内,只有一个交点的两条直线是平行线
D 在同一平面内,没有交点的两条线段叫平行线
知识点二平行线的画法
(1)画法
1、落
2、靠
3、移
4、画
例
一、根据叙述画出图形:直线AB,CD是相交线,点P是直线AB,CD外一点,直线EF
经过点P与直线AB平行,并且与直线CD相交于点E。
对应练习一已知点P,Q分别在∠AOB的边OA,OB上
(1)过点P作OA的垂线
(2)过点Q作OA的平行线
知识点三平行公理及推论
内容:
推论:
例一、过一点画已知直线的平行线,则()
A 有且只有B有两条C不存在D不存在或只有一条 知识点四平行线的判定
(1)平行线的判定方法平行线
①
②
③
(2)几何符号语言
(3)推论
例
一、如图所示,根据已知条件,完成下面填空
(1)∵∠1=∠3∴∥()
(2)∵∠2=∠3∴∥()
(3)∵∠3+∠4=180°∴∥()
(4)∵∠2+∠4=180°∴∥()
例
二、如图所示,若CD⊥BF,且∠G+∠GBF=90°,你能说明CD∥GF?为什么?
对应练习1.如图所示,已知直线AB,BC,CD,DA相交于ABCD四点,∠2+∠3=180°求证:(1)AB∥CD(2)AD∥BC
2.如图,下列条件中,不能判断直线L1∥L2的是()
A ∠1=∠3B∠4=∠5C∠2+∠4=180°D∠2=∠
33.如图,下列能判定FB∥CE的条件是()
A∠F+∠FBC=180°B∠ABF=∠CC∠F=∠CD∠A=∠D
4.如果直线a、直线b都和直线c平行,那么直线a和直线b的位置关系是(A相交B平行C相交或平行D垂直
知识点五平行线的性质
(1)性质
前提条件:
结论:
(2)几何符号语言
(3)平行线的性质与判定的互逆关系
1=∠2,)∠
例
一、如图所示,已知BD∥AF∥CE,∠ABD=60°,ACE=36°,AP是∠BAF的平分线,求∠
PAC的度数。
例
二、如图所示,已知DE⊥AO于E,BO⊥AO,FC⊥AB于C,∠1=∠2,证明:DO⊥AB
例
三、如图,CD平分∠ACB,AC∥DE,CD∥EF,试证EF平分∠DEB
练习一
1.如图,∠1=∠2,∠3=∠4,∠5=∠A。求证BE∥CF。
2.如图,已知AB∥CD,证明:∠BED=∠B+∠D
3.如图,AB∥CD,∠3:∠2=3:2,求∠1的度数
4.如图,线AB,CD相交于点0,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1,求∠COF 的度数
知识点六命题的概念
(1)概念
(2)组成(3)形式
(4)命题的判断
例
一、把下列命题写成“如果„那么„”的形式
(1)两条平行线被第三条直线所截,同位角相等。
(2)经过两点有且只有一条直线
知识点七命题的分类
(3)分类
(4)概念
(5)定理
(6)真命题的识别
(7)定理与真命题的关系
例
一、下列命题中是假命题的有()
①对顶角相等②若︱a︱=︱b︱,则a=b③若a-b=0,则a=b=0④两直线平行,同位角相等
知识点八平移变换
(1)图形平移必须具备的两个基本要素
知识点九平移的特征
①
②
知识点十平移作图
(1)平移作图应具备三个条件
(2)平移作图法
(3)平移作图的关键
练习:
1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数
2.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由
第五篇:初一数学相交线与平行线典型题目练习
第五章 相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴
过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直
线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________
与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:
_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: __________
_______.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________.11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是
______________________.命题常可以写成“如果„„那么„„”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:
13.如图,BCAC,CB8cm,AC6cm,AB10cm,那么点
是_____,点B到AC的距离是_______,点A、B两点的距离
到AB的距离是________.
14.设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_________;
b)若ab,bc,则a与c的位置关系是_________;
c)若a//b,bc,则a与c的位置关系是________.
15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
16.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.
A到BC的距离是_____,点C
17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,则B____()
又∵AB∥DE,AB∥CF,∴____________()
∴∠E=∠____()
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
18.⑴如图,已知∠1=∠2 求证:a∥b.⑵直线a//b,求证:12.
19.阅读理解并在括号内填注理由:
如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,∴∠MEB=∠MFD()
又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即 ∠MEP=∠______
∴EP∥_____.()
20.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小
.21.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证
12.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.