等差数列的证明

时间:2019-05-13 09:02:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列的证明》。

第一篇:等差数列的证明

一、等差数列的证明 利用等差(等比)数列的定义

在数列{an}中,若anan1d

二.运用等差中项性质

anan22an1{an}是等差数列

三.通项与前n项和法

若数列通项an能表示成ananb(a,b为常数)的形式,则数列an是等差数列; 若数列an的前n项和Sn能表示成Snan2bn(a,b为常数)的形式,则数列an等差数列;

例1.若Sn是数列an的前n项和,Snn2,则an是().A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列

练习:已知数列前n项和snn22n,求通项公式an,并说明这个数列是否为等差数列。

练习:设数列an的前n项的和Snn22n4,nN,⑴写出这个数列的前三项a1,a2,a3;

⑵证明:数列an除去首项后所成的数列a2,a3,a4是等差数列。

例2:已知数列an满足a11,an2an12

(Ⅰ)求证:数列nn2,an是等差数列; n2

(Ⅱ)求数列an的通项公式。

练习:已知数列an满足a12,an1an,12an(Ⅰ)求证:数列1是等差数列; an(Ⅱ)求数列an的通项公式。

第二篇:如何证明等差数列

如何证明等差数列

设等差数列an=a1+(n-1)d

最大数加最小数除以二即

/2=a1+(n-1)d/2

{an}的平均数为

Sn/n=/n=a1+(n-1)d/2

得证

1三个数abc成等差数列,则c-b=b-a

c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)

b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)

因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)

即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)

所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列

等差:an-(an-1)=常数(n≥2)

等比:an/(an-1=常数(n≥2)

等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)

等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2

我们推测数列{an}的通项公式为an=5n-4

下面用数学规纳法来证明:

1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立

2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)

则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2

于是S(k+1)=a(k+1)+Sk

而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8

即:(5k-8)*-(5k+2)Sk=-20k-8

所以(5k-8)a(k+1)-10Sk=-20k-8

即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)

所以a(k+1)=5k+1=5(k+1)-4

即知n=k+1时,推测仍成立。

在新的数列中

An=S

=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)

A(n-1)=S

=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

=4d+4d+4d+4d+4d

=20d(d为原数列公差)

20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。

A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列

那么你就设直角三角形地三条边为a,a+b,a+2b

于是它是直角三角形得到

a²+(a+b)²=(a+2b)²

所以a²+a²+2ab+b²=a²+4ab+4b²

化简得a²=2ab+3b²

两边同时除以b²

解得a/b=3即a=3b

所以三边可以写为3b,3b+b。3b+2b

所以三边之比为3:4:5

设等差数列an=a1+(n-1)d

最大数加最小数除以二即

/2=a1+(n-1)d/2

{an}的平均数为

Sn/n=/n=a1+(n-1)d/2

得证

第三篇:等差数列证明[推荐]

设数列{an}的前n项和为Sn,若对于所有的正整数n,都有Sn=n(a1+an)/2,求证:{an}是等差数列

解:证法一:令d=a2-a1,下面用数学归纳法证明an=a1+(n-1)d(n∈N*)①当n=1时,上述等式为恒等式a1=a1,当n=2时,a1+(2-1)d=a1+(a2-a1)=a2,等式成立.②假设当n=k(k∈N,k≥2)时命题成立,即ak=a1+(k-1)d 由题设,有Sk

k(a1ak)(k1)(a1ak1),Sk1,22

(k1)(a1ak1)k(a1ak)

+ak+1

又Sk+1=Sk+ak+1,所以

将ak=a1+(k-1)d代入上式,得(k+1)(a1+ak+1)=2ka1+k(k-1)d+2ak+1 整理得(k-1)ak+1=(k-1)a1+k(k-1)d ∵k≥2,∴ak+1=a1+[(k+1)-1]d.即n=k+1时等式成立.由①和②,等式对所有的自然数n成立,从而{an}是等差数列.证法二:当n≥2时,由题设,Sn1

(n1)(a1an1)n(a1an),Sn

所以anSnSn1

n(a1a2)(n1)(a1an1)

 22

(n1)(a1an1)n(a1an)

同理有an1

从而an1an

(n1)(a1an1)(n1)(a1an1)

n(a1an)

整理得:an+1-an=an-an-1,对任意n≥2成立.从而{an}是等差数列.评述:本题考查等差数列的基础知识,数学归纳法及推理论证能力,教材中是由等差数列的通项公式推出数列的求和公式,本题逆向思维,由数列的求和公式去推数列的通项公式,有一定的难度.考生失误的主要原因是知道用数学归纳法证,却不知用数学归纳法证什么,这里需要把数列成等差数列这一文字语言,转化为数列通项公式是an=a1+(n-1)d这一数学符号语言.证法二需要一定的技巧.

第四篇:等差数列的证明

等差数列的证明

1三个数abc成等差数列,则c-b=b-a

c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)

b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)

因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)

即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)

所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列

等差:an-(an-1)=常数(n≥2)

等比:an/(an-1=常数(n≥2)

等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)

等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2

我们推测数列{an}的通项公式为an=5n-4

下面用数学规纳法来证明:

1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立

2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)

则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2

于是S(k+1)=a(k+1)+Sk

而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8

即:(5k-8)*-(5k+2)Sk=-20k-8

所以(5k-8)a(k+1)-10Sk=-20k-8

即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)

所以a(k+1)=5k+1=5(k+1)-4

即知n=k+1时,推测仍成立。

在新的数列中

An=S

=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)

A(n-1)=S

=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

=4d+4d+4d+4d+4d

=20d(d为原数列公差)

20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。

A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列

证明:

an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/2

2an=na1+nan-na1-nan-1+a1+an-1

(n-2)an=(n-1)*(an-1)-a1(1)

同理

(n-1)*(an+1)=nan-a1(2)

(1)-(2)

得到

(2n-2)an=(n-1)*(an-1)+(n-1)(an+1)

2an=an-1+an+1

所以an+1-an=an-an-1

所以数列{an}是等差数列

那么你就设直角三角形地三条边为a,a+b,a+2b

于是它是直角三角形得到

a²+(a+b)²=(a+2b)²

所以a²+a²+2ab+b²=a²+4ab+4b²

化简得a²=2ab+3b²

两边同时除以b²

解得a/b=3即a=3b

所以三边可以写为3b,3b+b。3b+2b

所以三边之比为3:4:5

设等差数列an=a1+(n-1)d

最大数加最小数除以二即

/2=a1+(n-1)d/2

{an}的平均数为

Sn/n=/n=a1+(n-1)d/2

得证

第五篇:证明等比等差数列

1.已知数列满足a1=1,an+1=2an+1(n∈N*)(1)求证数列{an+1}是等比数列;(2)求{an}的通项公式.

2.已知数列{an}中,a135,an21an1(n2,nN),数列{bn}满足

bn1(nN)an1;

(1)求证:数列(2)求数列

{bn}是等差数列;

{an}的通项公式

na1,a2a23.在数列an中,1 n1n(1)设bnan,n1证明2bn是等差数列;(2)求数列an的通项公式。

4.设数列

{lgan}是等差数列;{an}的前n项和为Sn,a110,an19Sn10。

求证:

5.已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求an表达式;

下载等差数列的证明word格式文档
下载等差数列的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列与等比数列的证明

    龙源期刊网 http://.cn 等差数列与等比数列的证明 作者:刘春建 来源:《高考进行时·高三数学》2013年第03期 一、 考纲要求 1. 理解等差数列的递推关系,并能够根据递推关系证明......

    等差数列专题

    等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公......

    等差数列与等比数列的证明方法[最终定稿]

    等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法......

    等差数列、等比数列的证明及数列求和5篇

    等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数......

    等差数列及习题

    等差数列 通项公式 a(n)=a+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或......

    等差数列教案(精选)

    等差数列教案 一、 教材分析 从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另......

    学案:等差数列及和

    等差数列及其前n项和 一.高考考纲 1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等. 2.考查等差数列的性质、前n项和公式及综合......

    《等差数列》说课稿

    《等差数列》说课稿 《等差数列》说课稿1 一、说教材等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作......