等差数列的性质(定稿)

时间:2019-05-14 18:37:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列的性质(定稿)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列的性质(定稿)》。

第一篇:等差数列的性质(定稿)

等差数列的性质

1.数列

为等差数列,则a3=

2.设x,a1,a2,a3,y成等差数列,x,b1,b2,b3,b4,y成等差数列,则的值是

第二篇:等差数列的性质总结

1.等差数列的定义式:anan

12.等差数列通项公式:

ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an

aam推广: anam(nm)d.从而dn; nm

3.等差中项

(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A

(2)等差中项:数列an是等差数列2anan-1an1(n2,nN+)2an1anan

24.等差数列的前n项和公式:

n(a1an)n(n1)d1Snna1dn2(a1d)nAn2Bn 2222

(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)

特别地,当项数为奇数2n1时,an1是项数为2n+1的等差数列的中间项

S2n1ab或2Aab 2等差数列性质总结(n2); d(d为常数)2n1a1a2n122n1an1(项数为奇数的等差数列的各项和等于项数乘以中间项)

5.等差数列的判定方法

(1)定义法:若anan1d或an1and(常数nN) an是等差数列.

(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan2.⑶数列an是等差数列anknb(其中k,b是常数)。

(4)数列an是等差数列SnAn2Bn,(其中A、B是常数)。

6.等差数列的证明方法

定义法:若anan1d或an1and(常数nN) an是等差数列 等差中项性质法:2anan-1an1(n2,nN).

7.提醒:

(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项ana1(n1)d

②奇数个数成等差,可设为„,a2d,ad,a,ad,a2d„(公差为d); ③偶数个数成等差,可设为„,a3d,ad,ad,a3d,„(注意;公差为2d)

8.等差数列的性质:

(1)当公差d0时,等差数列的通项公式ana1(n1)ddna1d是关于n的一次函数,且斜率为公差d;

n(n1)dddn2(a1)n是关于n的二次函数且常数项为0.前n和Snna122

2(2)若公差d0,则为递增等差数列,若公差d0,则为递减等差数列,若公差d0,则为常数列。

(3)当mnpq时,则有amanapaq,特别地,当mn2p时,则有aman2ap.注:a1ana2an1a3an2,(4)若an、bn为等差数列,则anb,1an2bn都为等差数列

-让梦想起飞,让成绩飞扬!

(5)若{an}是等差数列,则Sn,S2nSn,S3nS2n,„也成等差数列

(6)数列{an}为等差数列,每隔k(kN*)项取出一项(am,amk,am2k,am3k,)仍为等差数列

(7)设数列an是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和

。当项数为偶数2n时,S奇a1a3a5a2n1na1a2n1nan

2na2a2nS偶a2a4a6a2nnan1 2

S偶S奇nan1nannan1annd

S偶

S奇nan1an1 nanan

。当项数为奇数2n1时,则

S偶nS2n1S奇S偶(2n1)an+1S奇(n1)an+1 S奇S偶an+1S奇n1S偶nan+1

(其中an+1是项数为2n+1的等差数列的中间项).

(8){bn}的前n和分别为An、Bn,且

则Anf(n),nan(2n1)anA2n1f(2n1).nn2n1

(9)等差数列{an}的前n项和Smn,前m项和Snm,则前m+n项和Smnmn anm,amn,则anm0

(10)求Sn的最值

法一:因等差数列前n项是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性nN*。

法二:(1)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和

a0即当a10,d0,由n可得Sn达到最大值时的n值. an10

(2)“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。

an0即 当a10,d0,由可得Sn达到最小值时的n值. a0n1

或求an中正负分界项

注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于a1和d的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

-让梦想起飞,让成绩飞扬!

第三篇:高中数学等差数列性质总结

等差数列的性质总结

(一)等差数列的公式及性质

1.等差数列的定义: anan1d(d为常数)(n2);

2.等差数列通项公式:

ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an

推广: anam(nm)d.从而d

3.等差中项

(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A

(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan

24.等差数列的判定方法

(1)定义法:若anan1d或an1and(常数nN) an是等差数列.anam; nmab或2Aab 2

(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan2.

⑶数列an是等差数列anknb(其中k,b是常数)。

(4)数列an是等差数列SnAn2Bn,(其中A、B是常数)。

5.等差数列的证明方法

定义法:若anan1d或an1and(常数nN) an是等差数列. 

6.提醒:

(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项ana1(n1)d

②奇数个数成等差,可设为„,a2d,ad,a,ad,a2d„(公差为d);

③偶数个数成等差,可设为„,a3d,ad,ad,a3d,„(注意;公差为2d)

8..等差数列的性质:

(1)当公差d0时,等差数列的通项公式ana1(n1)ddna1d是关于n的一次函数,且斜率为公差d;

前n和Snna1n(n1)dddn2(a1)n是关于n的二次函数且常数项为0.22

2(2)若公差d0,则为递增等差数列,若公差d0,则为递减等差数列,若公差d0,则为常数列。

(3)当mnpq时,则有amanapaq,特别地,当mn2p时,则有aman2ap.注:a1ana2an1a3an2,(4)若an、bn为等差数列,则anb,1an2bn都为等差数列

(5)数列{an}为等差数列,每隔k(kN)项取出一项(am,amk,am2k,am3k,)仍为等差数列 *

(二).等差数列的前n项和公式:(1)Snn(a1an)n(n1)d1na1dn2(a1d)nAn2Bn 222

2(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)

特别地,当项数为奇数2n1时,an1是项数为2n+1的等差数列的中间项

S2n12n1a1a2n122n1an1(项数为奇数的等差数列的各项和等于项数乘以中间项)

(2)若{an}是等差数列,则Sn,S2nSn,S3nS2n,„也成等差数列

(3)设数列an是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和

1.当项数为偶数2n时,S奇a1a3a5a2n1na1a2n1nan

2na2a2nS偶a2a4a6a2nnan1 2

S偶S奇nan1nannan1an=nd

S奇nanan S偶nan1an

12、当项数为奇数2n1时,则

S奇n1S2n1S奇S偶(2n1)an+1S奇(n1)an+1 S奇S偶an+1S偶nS偶nan+1

(其中an+1是项数为2n+1的等差数列的中间项).

(4)an、{bn}的前n和分别为An、Bn,且

(5)等差数列{an}的前n项和Smn,前m项和Snm,则前m+n项和Smnmn

(6)求Sn的最值

法一:因等差数列前n项和是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性Anf(n),nan(2n1)anA2n1f(2n1).nn2n1nN*。

法二:(1)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和

an0即当a10,d0,由可得Sn达到最大值时的n值. a0n1

(2)“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。

即 当a10,d0,由

或求an中正负分界项 an0可得Sn达到最小值时的n值. an10

法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,Sn取最大值(或最小值)。若S p = S q则其对称轴为n

注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于a1和d的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

pq 2

第四篇:等差数列与等比数列的性质

第24课 等差数列与等比数列的性质

●考试目标主词填空

1.等差数列的性质.

①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2+an-1=a3+an-2=„=ak+an+1-k,③在等差数列{an}中,使am+a0=ap+aq成立的充要条件是是等差数列,⑤若数列{an}与{bn}均为等差数列,且m,k为常数,则{man+kbn}Sn=an2+bn+c能表示等差数列前n项和的充要条件是2.等比数列的性质.①在等比数列{an}中,公比为q,其单调性的考察应视a1及q的取值范围而定.②在有穷的等比数列{an}即:a1an=a2·an-1=a3·an-2=„=ak·an+1-k.

③在等比数列{an}中,使am·a0=ap·ak成立的充要条件是m+n=p+k. ④在等比数列中,每隔相同的项抽出来,依原来的顺序构成一个新数列,则此新数列仍是等比数列.man⑤若数列{an}与{bn}均为等比数列,m是不等于零的常数,则{m·an·bn}与仍为等比数列.bn

●题型示例点津归纳

【例1】证明下列论断:

(1)从等差数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等差数列.(2)从等比数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等比数列.

【解前点津】等差数列的公差以及等比数列的公比都是已知常数,且每隔k项抽取一个数中的k边应视为已知正整数,按定义证明即可.【规范解答】(1)设{xn}是公差为d的等差数列,抽取的第一个数为xm,隔k项抽取的第二个数为xm+k,再隔k项抽取的第三个数为xm+2k,依次类推,则新数列的第p项(p≥1)必为xm+(p-1)k ·第p+1项为xm+pk.由通项公式:

∵xm+pk-xm+(p-1)k=x1+(m+pk-1)d-[x1+(m+pk-k-1)d]=(k-1)d是一个p无关的常数,故新数列是一个公差为kd的等差数列.(2)设{yn}是一个公比为q的等比数列,抽取的第一个数为ym,隔k项抽取的第二个数为ym+k,再隔k项抽取的第三个数为ym+2k,依次类推,则新数列的第p项(p≥1)必为ym+(p-1)k,第p+1项为ym+pk.由等比数列通项公式: ∵ympk

ym(p1)ky1qmpk1k==q是一个与p无关的常数.mpkk1y1q

故新数列是一个公比为qk的一个等比数列.【解后归纳】证明{xn}是一个等差数列,只须证明xn-xn-1=常数即可,类似地,证明{yn}是一个等比数列,只证明yn=常数即可. yn

1【例2】设x,y,z∈R,3x,4y,5z成等比数列,且

111xz,成等差数列,求的值.xzxyz

【解前点津】依条件列方程组,从方程组中推导

xz

之值. zx

(4y)2(3x)(5z)

2xz

y=【规范解答】由题意得:211代入第一个方程消去y得:

xzyxz

2xz2xz34(xz)26416()=15xz=,故=.xz15zx15xz

【解后归纳】因(xz

)中不含y,故在方程组中,y成为消去的对象.zx

【例3】已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn,求满足不等式|Sn-n-6|<的最小正整数n. 12

5【解前点津】构造“新数列”,求出通项公式,注意到3(an+1-1)=-(an-1).【规范解答】由条件得:3(an+1-1)=-(an-1).视为3xn+1=-xn,∵a1-1=8,故新数列{an-1}是首项为8,公比为-的一个等比数列.故:

31n81

31n-11n-1=6-6×(-1)n,an-1=8(-),即an=1+8(-)Sn-n=

3331

13

11n-1

∴|Sn-n-6|=6×()n <3>250>35n-1>5.3125

∴n>6从而n≥7.故n=7是所求的最小正整数.

【解后归纳】将一个简单的递推公式进行变形,从而转化为一个等差数列,或一个等比数列的模型.这是一种“化归”的数学思想.【例4】设{an}为等差数列,{bn}为等比数列,且b1=a1,b2=a2,b3=a3(a1

n

2+bn)=2+1,试求{an}的首项与公差.【解前点津】设

b2b

=q,则1=2+1.1qb1

【规范解答】设{an}的公差为d,{bn}的公比为q,则由条件知,b2=b1b3(a2)2=(a1)·(a3)

a2

=(1+2)(2+1)

a1

(a1+d)

4=a22,a12a22=a1

·(a1+2d)(a1+d)=|a1(a1+2d)|又b1=(1+q)(22

2+1),故

2a1

42即a1=[a1+(a1+d)2](2+1),解关于a1及d的方程组得:a1=-2,d=22-2.

【解后归纳】将所列方程组转化为关于基本量a1,d的方程,是常规思路.此题是否有另外思路?读者可自己寻找.●对应训练分阶提升

一、基础夯实

1.在等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()

bbb9b10

A.8B.()C.9D.()10

aaaa

2.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值的自然数n是()

A.4和5B.5或6C.6或7D.不存在3.若{an}为一个递减等比数列,公比为q,则该数列的首项a1和公比q一定为()A.q<0,a1≠0B.a1>0,01 C.q>1,a1<0D.00

4.由公差为d的等差数列a1,a2,a3,„,重新组成的数列a1+a4,a2+a5,a3+a6,„是()A.公差为d的等差数列B.公差为2d的等差数列 C.公差为3d的等差数列D.非等差

5.设2a=3,2b=6,2c=12,则a、b、c()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列 C.既不是等差数列,又不是等比数列D.既是等差数列,又是等比数列

6.若{an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10的值是()A.256B.-256C.512D.-51

27.设{an}是由正数组成的等比数列,且a5·a6=81,那么log3a1+log3a2+log3a3+„+log3a10的值是()A.5B.10C.20D.30

8.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.1

11111B.12C.13D.14 444

49.在等比数列{an}中,已知对任意自然数n,a1+a2+„+an=2n-1,则a1+a2+„+a2n=()A.(2n-1)2B.1n2n1

(2-1)C.4-1D.(4n-1)3

310.上一个n级的台阶,若每次可上一级或两级,设上法的总数为f(n),则下列猜想中正确的是()

A.f(n)=nB.f(n)=f(n-1)+f(n-2)

n(n1,2)

C.f(n)=f(n-1)·f(n-2)D.f(n)=

f(n1)f(n2)(n3)

二、思维激活

11.在等差数列{an}中,若Sm=n,Sn=m(Sn为前n项和)且m≠n,则Sm+n

三、能力提高

12.在等差数列{an}中,a1,a4,a25三个数依次成等比数列,且a1+a4+a25=114,求这三个数.13.已知{an}为等差数列,(公差d≠0),{an}中的部分项组成的数列ak1,ak2,ak13,„,ak,„,n

恰好为等比数列,其中k1=1,k2=5,k3=17,求k1+k2+k3+„+kn.14.设f(x)=a1x+a2x2+„+anxn(n为正偶数),{an}是等差数列,若f(1)=(1)求an;(2)求证:f(1nn(n+1),f(-1)=. 22)<2. 2

15.数列{an}的前n项和Sn=100n-n2(n∈N).(1){an}是什么数列?

(2)设bn=|an|,求数列|bn|的前n项和.第3课等差数列与等比数列的性质习题解答

1.A先求a1与公比q.2.B∵d<0,∴a3>a9,∴a3=-a9.3.B分别考察a1>0与a1<0两种情况.4.B∵(an+an+3)-(an-1+an+2)=(an-an-1)+(an+3-an+2)=d+d=2d.5.A∵62=3×12,∴(2b)2=2a·2c2b=a+c且b2≠ac.6.C∵a4a7=a3a8=-512,a3+a8=124,∴a3,a8是x2-124x-512=0的两根.解之:a3=-4,a8=128或a3=128,a8=-4q=-2或-

但q=-不合题意,∴a10=a8·q2=512.22

7.C其值为log3(a1a2„a10)=log3(a1a10)·(a2a9)„(a5a6)=log3(a5a6)5=5log3(a5·a6)=5log381=20.9

xx23y28.A设这两个正数为x,y,由题意可得:.272yx9y4

9.D∵Sn=2n-1,∴an+1=Sn+1-Sn=2n+1-1-(2n-1)=2n,又a1=S1=21-1=1=21-1,∴an=2n-1.10.D每次可上一级或两级,故需分段考虑.11.Sm+n=-(m+n)运用公式求和.2a4(a13d)2a1(a124d)a1a25

12.设公差d,依题意得:

a1a4a251143a127d114

a438a4a13d23414a138a12

或,或

a38aa24d224498d0d425125

∴这三个数是38,38,38或2,14,98.

13.∵a1,a5,a17成等比数列,∴(a1+4d)2=a1(a1+16d)d=

aa11,an=a1(n+1),a5=a1+4d=3a1,∴q=5

22a1

=3,akn=

k11

a1(kn+1)akn=a1·qn-1=a1×3n-1,∴na1=a1×3n-1,∴kn=2×3n-1-1k1+k2+k3+„22

n-1

2(13n)

+kn=2(1+3+9+„+3)-n= =3n-n-1.(13)n

14.(1)设{an}的公差为d,则f(1)=a1+a2+„+an=d=1,由na1+

1nn

n(n+1),f(-1)=-a1+a2-a3+a4+„-an-1+an=d=,∴222

n(n1)n(n1)

得a1=1,∴an=n. 22

2n

1123111111n(2)f()=+2+3+„+(1-)]f()=+2+3+„+n+n1

22222222222

两式相减:

1

11n

1111n2nnf()=1++2+„+n1-n=-n=2-2n1-2n<2. 2222212

12

15.(1)an=Sn-Sn-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n(n≥2),∵a1=S1=100×1-12=99=101-2×1,∴数列{an}的通项公式为an=101-2n又∵an+1-an=-2为常数.∴数列{an}是首项为a1=99,公差d=-2的等差数列.(2)令an=101-2n≥0得n≤50(n∈N*),①当1≤n≤50时,an>0,此时bn=|an|=an,所以{bn}的前n项和Sn′=100n-n2且S50′=100×50-502=2500,②当n≥51时,an<0,此时bn=|an|=-an由b51+b52+„+bn=-(a51+a52+„+an)=-(Sn-S50)=S50-Sn得数列{bn}前n项和为Sn′=S50+(S50-Sn)=2S50-Sn=2×2500-(100n-n2)=5000-100n+n2.(nN*,1n50)100nn

由①②得数列{bn}的前n项和为Sn′=.2*

(nN,n51)5000100nn

第五篇:《等差数列性质》的教学反思

高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。本节课以学生为主体,教师为主导,充分调动了学生的积极性。教师教态自然,亲和力好,课堂气氛融洽。教学环节的设置松弛有度,从例题入手,探索实验,概括提炼,综合应用,步骤层次感强,学生参与度高,老师指导有方,引导得法,学生能充分体会成功的喜悦,从而促进学生学习的兴趣。

1.选题针对性强,点评到位

选材取自学生练习,针对性强,内容相对集中;从学生问题的点评答疑中,提炼结论,符合从具体到抽象的认知规律

2.充分发挥学生学习的自主性

学生在课堂上体现了高度的参与和热情。学生对于本节课的内容由于事先做好了导学案,所以有充分的思考和训练时间,通过合作学习,进一步应用定义解决问题,学生积极主动参与复习的全过程,特别是让学生参与归纳、整理的过程,为学生提供了充分的锻炼机会。

3.系统有效的完成教学任务

系统规划复习和训练的内容,帮助学生将所学的分散知识系统化。注意从学生的认识出发,通过学生解题的体验,挖掘提升数学方法和知识;注意细节和纠错,及时反馈作业中的问题。学生错误得到点评纠正,学生的思维和创造性得到提高。

下载等差数列的性质(定稿)word格式文档
下载等差数列的性质(定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    类比探究等差数列和等比数列的性质

    类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二......

    等差数列的一个特征性质及应用

    等差数列第一个特征性质及应用江西南昌市卫生学校熊秋玲内容提要:本文证明等差数列的一个重要性质:数列{an}是等差数列的充要条件为:对于任意三个自然数q,p,r,恒有(q-r)ap+(r-p)......

    等差数列运算与性质专项训练

    等差数列的运算1.在等差数列an中,a22,a34,则a10()(A)12(B)14(C)16(D)182.将含有k项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和是781,则k的值......

    2.2.1等差数列的性质(学案4)

    2.2.1等差数列的性质(学案4) 一、基础知识 1、等差数列定义 2、等差通项公式 3、等差数列性质 (1)若mnpq2t,则(2)若数列an是等差数列,则 数列ak,akm,ak2m,……成等差,公差为数列kanb是等......

    等差数列和等比数列的中项性质的拓展

    等差数列和等比数列的中项性质的拓展———福贡县第一中学杨豪摘要:等差数列和等比数列的中项性质是高中数学中的一个重要内容,也是高考数学命题的一个热点。如果我们从本质上......

    等差数列专题

    等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公......

    等差数列的概念及性质课时一教师版

    等差数列的概念教学目标(1)能准确叙述等差数列的定义;(2)能用定义判断数列是否为等差数列;(3)会求等差数列的公差及通项公式。教学重点,难点等差数列的定义及等差数列的通项公式。教......

    如何证明等差数列

    如何证明等差数列设等差数列an=a1+(n-1)d最大数加最小数除以二即/2=a1+(n-1)d/2{an}的平均数为Sn/n=/n=a1+(n-1)d/2得证1三个数abc成等差数列,则c-b=b-ac^2(a+b)-b^2(c+a)=(c......