等差数列(二)学生(五篇范例)

时间:2019-05-14 18:36:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列(二)学生》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列(二)学生》。

第一篇:等差数列(二)学生

2.1 等差数列(二)

1.已知{an}为等差数列,a2+a8=12,则a5等于().

A.4B.5C.6D.7

2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于().

A.40B.42C.43D.45

3.在等差数列{an}中,a3,a9是方程2x2-x-7=0的两根,则a6等于(). 1177B.C.-D.-2424

4.已知{an}为等差数列,a3+a8=22,a6=7,则a5=________.5.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{an+bn}的第37项为________.

6.在等差数列{an}中,(1)已知a2+a3+a23+a24=48,求a13;

(2)已知a2+a3+a4+a5=34,a2·a5=52,求公差d.7.在等差数列{an}中,a2+a8=16,a4=1,则a6的值为().

A.15B.17C.36D.64

8.等差数列的前三项依次是x-1,x+1,2x+3,则其通项公式为().

A.an=2n-5B.an=2n-3C.an=2n-1D.an=2n+1

9.若log32,log3(2x-1),log3(2x+11)成等差数列,则x的值为________.

10.已知{an}是公差为-2的等差数列,若a3+a6+a9+…+a99=-82,则a1+a4+a7+…+a97等于________.

11.已知等差数列{an},a1=a,公差d=1,若bn=an2-an+12(n∈N+),试判断数列{bn}是否为等差数列?并证明你的结论.

12.数列{an}满足a1=1,an+1=(n2+n-λ)an,λ是常数.

(1)当a2=-1时,求λ及a3的值;

(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

第二篇:等差数列一(学生)

等差数列

(一)一、选择题

1.等差数列{an}的前n项和为Sn,若a2+a6+a7=18,则S9的值是()

A.64B.72C.54D.以上都不对

2.已知等差数列{an}的前n项和为Sn,若a4=18-a5,则S8等于()

A.18B.36C.54D.72

3.已知等差数列{an}的前n项和为Sn,若m>1,am-1+am+1-am2-1=0,S2m-1=39,则m等于()

A.10B.19C.20D.39

4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()

A.S17B.S18C.S15D.S14

5.设等差数列{an}的前n项和为Sn.若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于()

A.6B.7C.8D.9

6.已知在等差数列{an}中,对任意n∈N*,都有an>an+1,且a2,a8是方程x2-12x+m=0的两根,且前15项的和S15=m,则数列{an}的公差是()

A.-2或-3B.2或3C.-2D.-3

7.等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=________.8.已知{an}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线的斜率是________.

9.设a1,d为实数,首项为a1公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,则d的取值范围是________.

三、解答题

10.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).

1(1)求证:数列{是等差数列; an

(2)求数列{an}的通项.

31111.已知数列{an}中,a1an=2-n≥2,n∈N*),数列{bn}满足bn=(n∈N*). 5an-1an-1

(1)求证:数列{bn}是等差数列;

(2)求数列{an}中的最大项和最小项,并说明理由.

第三篇:高中数学等差数列教案(二)

课题:3.3 等差数列的前n项和

(二)6161,又∵n∈N*∴满足不等式n<的正整数一共有30个.2

2二、例题讲解例1.求集合M={m|m=2n-1,n∈N*,且m<60}的元素个数及这些元素的和.解:由2n-1<60,得n<

即 集合M中一共有30个元素,可列为:1,3,5,7,9,…,59,组成一个以a1=1, an(a1an)30=59,n=30的等差数列.∵Sn=2,∴S30(159)

30=2=900.答案:集合M中一共有30个元素,其和为900.例2.在小于100的正整数中共有多少个数能被3除余2分析:满足条件的数属于集合,M={m|m=3n+2,m<100,m∈N*}

解:分析题意可得满足条件的数属于集合,M={m|m=3n+2,m<100,n∈N*} 由3n+2<100,得n<322

3,且m∈N*,∴n可取0,1,2,3,…,32.即 在小于100的正整数中共有33个数能被3除余2.把这些数从小到大排列出来就是:2,5,8,…,98.它们可组成一个以a1=2,d=3, a33=98,n=33的等差数列.由Sn(a1an)n=2,得S33(298)

33=2=1650.答:在小于100的正整数中共有33个数能被3除余2,这些数的和是1650.例3已知数列an,是等差数列,Sn是其前n项和,求证:⑴S6,S12-S6,S18-S12成等差数列;

⑵设Sk,S2kSk,S3kS2k(kN)成等差数列

证明:设an,首项是a1,公差为d

则S6a1a2a3a4a5a6

∵S12S6a7a8a9a10a11a12

(a16d)(a26d)(a36d)(a46d)(a56d)(a66d)(a1a2a3a4a5a6)36dS636d∵S18S12a13a14a15a16a17a18

(a76d)(a86d)(a96d)(a106d)(a116d)(a126d)

(a7a8a9a10a11a12)36d(S12S6)36d∴

S6,S12S6,S18S12是以36d同理可得Sk,S2kSk,S3kS2k是以kd为公差的等差数列.三、练习:

1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式.分析:将已知条件转化为数学语言,然后再解.解:根据题意,得S4=24, S5-S2=27

则设等差数列首项为a1,公差为d, 2

4(41)d4a2412则 

(5a5(51)d)(2a2(21)d)271122

a13解之得:∴an=3+2(n-1)=2n+1.d2

2.两个数列1, x1, x2, ……,x7, 5和1, y1, y2, ……,y6, 5均成等差数列公差分别是d1, d2, 求xx2x7d1与1y1y2y6d2

解:5=1+8d1, d1=d147, 又5=1+7d2, d2=, ∴1=;d2278

x1+x2+……+x7=7x4=7×15=21,2

y1+y2+ ……+y6=3×(1+5)=18,∴x1x2x77=.y1y2y66

3.在等差数列{an}中, a4=-15, 公差d=3, 求数列{an}的前n项和SnSn解法1:∵a4=a1+3d, ∴ -15=a1+9, a1=-24,3n(n1)3512512

∴ Sn=-24n+=[(n-)-],36226

∴ 当|n-51|最小时,Sn最小,6

即当n=8或n=9时,S8=S9=-108最小.解法2:由已知解得a1=-24, d=3, an=-24+3(n-1),由an≤0得n≤9且a9=0,∴当n=8或n=9时,S8=S9=-108最小.四、小结本节课学习了以下内容:an是等差数列,Sn是其前n项和,则Sk,S2kSk,S3kS2k(kN

五、课后作业:

1.一凸n边形各内角的度数成等差数列,公差是10°,最小内角为100°,求边数n.解:由(n-2)·180=100n+n(n1)×10,2

求得n2-17n+72=0,n=8或n=9,当n=9时, 最大内角100+(9-1)×10=180°不合题意,舍去,∴ n=8.2.已知非常数等差数列{an}的前n项和Sn满足

10Snm23n2(m1)nmn

解:由题设知

2n2(n∈N, m∈R), 求数列{a5n3}的前n项和.Sn=lg(m32

即 Sn=[(m1)n2mn(m1)n2mn)=lgm+nlg3+lg2, 52(m1)mlg2]n2+(lg3+lg2)n+lgm2,55

∵ {an}是非常数等差数列,当d≠0,是一个常数项为零的二次式(m1)lg2≠0且lgm2=0, ∴ m=-1, 5

212 ∴ Sn=(-lg2)n+(lg3-lg2)n,55则 当n=1时,a1=lg3lg2 5

21当n≥2时,an=Sn-Sn1=(-lg2)(2n-1)+(lg3-lg2)55

41=nlg2lg3lg2 55∴

41nlg2lg3lg2 55d=an1an=lg2 5

41a5n3=(5n3)lg2lg3lg2 55

11=4nlg2lg3lg2 5

31数列{a5n3}是以a8=lg3lg2为首项,5d=4lg2为公差的等差数列,∴数列5∴an=

{a5n3}的前n项和为

n·(lg331211lg2)+n(n-1)·(4lg2)=2n2lg2(lg3lg2)n 255

3.一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32:27,求公差d.解:设这个数列的首项为a1, 公差为d,则偶数项与奇数项分别都是公差为2d的等12a166d35432, 解得d=5.差数列,由已知得6a230d6a130d27

解法2:设偶数项和与奇数项和分别为S偶,S奇,则由已知得

S偶S奇354S32,求得S偶=192,S奇=162,S偶-S奇=6d, ∴ d=5.偶S27奇

4.两个等差数列,它们的前n项和之比为5n3, 2n1

解:a9a1a17b9b1b1717(a1a17)S8.17'17S173(b1b17)2

5.一个等差数列的前10项和为100,前100项和为10,求它的前110 解:在等差数列中,S10, S20-S10, S30-S20, ……, S100-S90, S110-S100, 成等差数列,∴ 新数列的前10项和=原数列的前100项和,10S10+109·D=S100=10, 解得D=-22 2

∴ S110-S100=S10+10×D=-120, ∴ S110=-110.6.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,(1)求公差d的取

值范围;

(2)指出S1, S2, S3, ……, S121211S12ad01122a111d02解:(1),1312a6d01S1313a1d02

∵ a3=a1+2d=12, 代入得247d024, ∴ -

(2)S13=13a7<0, ∴ a7<0, 由S12=6(a6+a7)>0, ∴ a6+a7>0, ∴a6>0,S6最大.六、板书设计(略)

七、课后记:

第四篇:等差数列专题(学生版、教师版)

等差数列专题(学生版、教师版)

知识回顾

1.等差数列的判定方法

①定义法:an+1-an=d(常数)⇔{an}是等差数列.②中项公式法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.③通项公式法:an=pn+q(p,q为常数)⇔{an}是等差数列.④前n项和公式法:Sn=An2+Bn(A,B为常数)⇔{an}是等差数列.

2.等差数列的性质

①an=am+(n-m)d(n,m∈N+).

②若m,n,p,k∈N*,且m+n=p+k,则am+an=ap+ak,其中am,an,ap,ak是数列中的项.特别地,当m+n=2p时,有am+an=2ap.③若{an}成等差数列,且Sn为其前n项的和,则Sm,S2m-Sm,S3m-S2m,…成等差数列.

Sa④项数为偶数2n的等差数列{an},有S偶S奇nd;奇n.S偶an

1S奇n项数为奇数(2n-1)的等差数列{an},有S2n-1=(2n-1)an(an为中间项);S奇-S偶=an;=S偶n-1

⑤在等差数列中,若ap=q,aq=p,则ap+q=0;若Sm=n,Sn=m,则Sm+n=-(m+n).3.用函数的观点审视等差数列

(1)等差数列的通项公式可表示为an=dn+b(这里b=a1-d,a1是首项,d为公差).

d1(2)Snn2d-2a1)n.∴当d≠0时,等差数列的前n项和Sn是n的二次函数. 2

2典型例题

【例1】在等差数列{an}中,(1)已知a15=33,a45=153,求a61;

(2)已知S8=48,S12=168,求a1和d;

(3)已知a6=10,S5=5,求a8和S8.答案(1)d=4,a61=217;(2)a1=-8,d=4;(3)a1=-5,d=3,a8=16,S8=

a12a2nan.12n

求证:(1)若{bn}为等差数列,数列{an}也是等差数列;

(2)若{an}是等差数列,则数列{bn}也是等差数列.

11证明(1)由已知得a1+2a2+…+nan=n(n+1)bn,a1+2a2+…+(n+1)an+1n+1)(n+2)·bn+1,22

113∴an+1=(n+2)bn+1-·b.∴an+1-an=(bn+1-bn)为常数,∴{an}为等差数列. 222

1111(2)由已知得an(n+1)bn(n-1)·bn-1,an+1=(n+2)·bn+1-n·b,2222n

32∴an+1-an=(bn+1-bn)为常数,∴bn+1-bn=an+1-an)为常数,∴数列{bn}也为等差数列. 2

3aA7n45【例3】已知两个等差数列{an},{bn}的前n项和分别为An,Bn,且n,则使得为整数的正整bnBnn38a1+a844.2【例2】两个数列{an}和{bn}满足bn=

数n的个数是()

A.2B.3C.4D.

5A2n-12aaa12a解析 ∵=∴=7+,∴当n=1,2,3,5,11时,D.bnbnB2n-12bnbnn+1

【例4】已知{an}为等差数列,Sn=m,Sm=n,其中m≠n,m,n∈N*,求Sm+n.答案 解法一:设首项为a1,公差为d,解方程得Sm+n=-(m+n).

Am2+Bm=n,①

解法二:设Sx=Ax2+Bx,则,①-②得A(m2-n2)+B(m-n)=n-m,2An+Bn=m,②

∵m≠n,∴A(m+n)+B=-1,∴Sm+n=A(m+n)2+B(m+n)=-(m+n).

mn

解法三:Sm-Sn=n-m=an+1+an+2+…+am=(an1am).∴an+1+am=a1+an+m=-2,∴Sm+n=-(m+n).

【例5】(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;

(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和.5=-5n+65.∴a13=0,即当n≤12时,an>0,n≥14时,an<0,解(1)方法一 an=20+(n-1)×333

12×115

∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12×20-3=130.2

25553 125n-2+方法二 同方法一求得d=-∴Sn=-23624∵n∈N*,∴当n=12或13时,Sn有最大值,且最大值为S12=S13=130.方法三 同方法一得d=-.又由S10=S15得a11+a12+a13+a14+a15=0.∴5a13=0,即a13=0.∴当n=12或13时,Sn有最大值.且最大值为S12=S13=130.(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4×1-25=-21.11a0所以数列{an}是以-21为首项,以4为公差的递增的等差数列.令n得nn≥5,所以n=6.4

4an10

-2n+23n n≤6,设{|an|}的前n项和为Tn,则Tn=

2n-23n+132 n≥7.

【例6】两个等差数列{an}:5,8,11,…和{bm}:3,7,11,…,都有100项,问它们有多少个共同的项. 解析 解法一:∵an=5+(n-1)×3=3n+2,bm=3+(m-1)×4=4m-1,∴两数列共同的项需3n+2=4m-1,∴n-1,而n∈N*,m∈N*

1≤3r≤100,∴设m=3r(r∈N),得n=4r-1.∴1≤r≤25,∴共有25个共同的项.

1≤4r-1≤100.*

解法二:设两数列共同项组成新数列{Cn},则C1=11,又an=3n+2,bm=4m-1,由题意知{Cn}为等差数列,且公差d=12,∴Cn=11+(n-1)×12=12n-1.又∵a100=302,b100=399,∴Cn=12n-1≤302,由n∈N*得n≤25,∴两数列有25个共同的项. 点评 可以看出,新数列的公差应是原来两数列的公差的最小公倍数.【例7】在下表所示的5×5正方形的25个空格中填入正整数,使得每一行,每一列都成等差数列,则标有*号的空格中的数是

解析 记aij为从上到下第i行,从左到右第j列的空格中所填的数,则a52=x,a41=y.由第3行得a33=2y+186,由第3列得a33=2×103-2x,所以2x+y=113.① 2

由第2行得a23=2×74-3y,由第3列得a23=2a33-103=3×103-4x,所以148-3y=3×103-4x,整理得4x-3y=161.②

联立①②解得x=50,y=13.所以a15=2×186-a55=2×186-4x=172,a13+a15a13=2a33-a53=112,故a14==142.故标有*号的空格应填142.【例8】已知数列{an}的前n项和为Sn,a1=1,nSn+1-(n+1)Sn=n2+cn(c∈R,n=1,2,3…),且S1,S3

成等差数列.3

(1)求c的值;

(2)求数列{an}的通项公式.Sn+cnSSSSSS解:(1)∴-n=1,2,3,…).∵S1,成等差数列,∴∴c=1.232132n+1nn(n+1)

S2,2

Sn+1

Sn+1SSS(2)由(1)得1(n=1,2,3,…).∴数列{},公差为1的等差数列.n1n+1n

SS∴(n-1)·1=n.∴Sn=n2.当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.n1

当n=1时,上式也成立∴an=2n-1(n=1,2,3,…).【例9】(1)设Sn为数列{an}的前n项和,且Sn=an-1)(n∈N *).求数列{an}的通项公式.

2an2an120

(2)已知数列{an}的前n项和为Sn,an>0,a1=12,且满足Sn=.试证明{an}为等差数列,并求{an}的通项公式.

解析(1)∵Sn=(an-1),∴当n=1时,S1=a1=·(a-1).解得a1=3.当n≥2时,22133aan=Sn-Sn-1=(an-1)-(an-1-1),得3,22an-1∴当n≥2时,数列{an}是以3为公比的等比数列,且首项a2=3a1=9.∴n≥2时,an=9·3n-2=3n.显然,当n=1时也成立.故数列的通项公式为an=3n(n∈N *).22an-1+2an-1-120an2an120

(2)当n≥2时,Sn=,①Sn-1=②

①-②整理得:(an-an-1-2)(an+an-1)=0,又an>0,则an

-an-1-2=0,即an-an-1=2,因此

{an}为等差数列,an=a1+2(n-1)=2n+10.【例10】(1)求sin21sin22sin23sin288sin289的值;

(2的前n项和;

111cos1

(3)求证:.

cos0cos1cos1cos2cos88cos89sin21

【解】(1)倒序相加法:2S(sin21cos21)(sin22cos22)(sin289cos289)=89 ∴S=44.5(2)裂项相消法:

Sn

1.sin1111(3)解:设S,∵tan(n1)tann 

cosncos(n1)cos0cos1cos1cos2cos88cos89

S

cos0cos1cos1cos2cos88cos891={(tan1tan0)(tan2tan1)(tan3tan2)[tan89tan88]} 

sin1

cos11

=(tan89tan0)=2.∴ 原等式成立

sin1sin1

反馈练习

1.在等差数列{an}中,2(a1+a4+a7)+3(a9+a11)=24,则此数列的前13项之和等于()(A)13(B)26(C)52(D)156 2.若等差数列{an}的前5项和为S5=25,且a2=3,则a7=()(A)12(B)13(C)14(D)15

3.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=()(A)14(B)21(C)28(D)35

n1(n为奇数)

4.已知数列an则a1+a2+a3+a4+…+a99+a100=()

n(n为偶数)

(A)4 800(B)4 900(C)5 000(D)5 100

5.已知等差数列{an}中,|a3|=|a9|,公差d<0;Sn是数列{an}的前n项和,则()(A)S5>S6(B)S5

6.在递减等差数列{an}中,若a1+a100=0,则其前n项和Sn取最大值时的n值为()(A)49(B)51(C)48(D)50 7.已知等差数列{an}的前n项和为Sn,且

SS41

,则8=_______. S83S16

8.各项均不为零的等差数列{an}中,若anan1an10(n∈N*,n≥2),则S2 012等于________.9.项数大于3的等差数列{an}中,各项均不为零,公差为1,且_______.10.在数列{an}中,a1=1,an+1=2an+2n,设bn,求证:数列{bn}是等差数列.2n1

11.已知数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1.(1)求数列{an}的通项公式;

(2)设Sn是数列{|an|}的前n项和,求Sn.【答案】1.B,2.B,3.C,4.C,5.D,6.D

an

1111,则其通项公式为a1a2a2a3a1a3

3*;

8、4 024;

9、an=n(n∈N)10

an12an2nann

1bn1,10.【证明】∵an+1=2an+2,∴bn1n

22n2n

17、∴bn+1-bn=1.又b1=a1=1,∴数列{bn}是首项为1,公差为1的等差数列.11.【解析】(1)∴an=a1+(n-1)d=-2n+10.n29n(n5),(2)令an≥0得n≤5.即当n≤5时,an≥0;n≥6时,an<0.∴Sn=2

n9n40(n6).

第五篇:等差数列练习题学生版

一、选择题

1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12 B.13 C.-12 D.-13 2.在等差数列{an}中,a2=5,a6=17,则a14=()A.45 B.41 C.39 D.37 3.已知数列{an}对任意的正整数n,点Pn(n,an)都在直线y=2x+1上,则数列{an}为()A.公差为2的等差数列 B.公差为1的等差数列 C.公差为-2的等差数列 D.非等差数列

4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9 5.下面数列中,是等差数列的有()①4,5,6,7,8,…

②3,0,-3,0,-6,…

③0,0,0,0,… ④110,210,310,410,…

A.1个 B.2个 C. 3个 D.4个

6.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4 B.5 C.6 D.7 7.已知等差数列{an}的首项a1=1,公差d=2,则a4等于()A.B.6 C.7 D.9 8.在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项公式an=()A.2n+1 B.2n-1 C.2n D.2(n-1)

二、填空题

9.△ABC三个内角A、B、C成等差数列,则B=__________.10.已知等差数列{an},an=4n-3,则首项a1为__________,公差d为__________.

11.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.12.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.三、解答题

13.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.

14.已知等差数列{an}中,a1<a2<a3<…<an且a3,a6为方程x2-10x+16=0的两个实根.

(1)求此数列{an}的通项公式;

(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由. 15.已知(1,1),(3,5)是等差数列{an}图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.

下载等差数列(二)学生(五篇范例)word格式文档
下载等差数列(二)学生(五篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列专题

    等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公......

    高中数学必修5高中数学必修5《2.2等差数列(二)》教案

    2.2等差数列(二) 一、教学目标 1、掌握"判断数列是否为等差数列"常用的方法; 2、进一步熟练掌握等差数列的通项公式、性质及应用. 3、进一步熟练掌握等差数列的通项公式、性质及应......

    等差数列复习教案(学生补课用)

    等差数列重点导读1.若{an}为等差数列,且满足则am+an=ap+aq(m,n,p,q∈N*)2.在等差数列{an}中,下标成等差数列,且公差为m的项,ak,ak+m,ak+2m,„,(k,m∈N*)组成数列.若{an},{bn}是等差数列,......

    如何证明等差数列

    如何证明等差数列设等差数列an=a1+(n-1)d最大数加最小数除以二即/2=a1+(n-1)d/2{an}的平均数为Sn/n=/n=a1+(n-1)d/2得证1三个数abc成等差数列,则c-b=b-ac^2(a+b)-b^2(c+a)=(c......

    等差数列及习题

    等差数列 通项公式 a(n)=a+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或......

    等差数列教案(精选)

    等差数列教案 一、 教材分析 从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另......

    学案:等差数列及和

    等差数列及其前n项和 一.高考考纲 1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等. 2.考查等差数列的性质、前n项和公式及综合......

    《等差数列》说课稿

    《等差数列》说课稿 《等差数列》说课稿1 一、说教材等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作......