第一篇:初中数学人教新课标版七年级上第一章有理数有理数的除法课件
初中数学人教新课标版七年级上第一章有理数有理数的除法课件
新 课 导 入 新 课 导 入 新 课 导 入
小 学 是 怎 样 进 行 除 法 运 算 的 ? 讨 论 两 数 相 除 的 例 子 有 哪 些 情 形 ?9÷3 正数除以正数-9÷3 负数除以正数 0÷3 零除以正数 9÷-3 正数除以负数 负数除以负数-9÷-3 0÷-3 零除以负数 0 能 否 做 除 数 教 学 目 标 教 学 目 标 教 学 目 标 知 识 与 能 力
1.理 解 有 理 数 除 法 法 则、会 进 行 有 理 数 的 除 法 运 算;2.会 求 有 理 数 的 倒 数.过 程 与 方 法
通 过 有 理 数 除 法 的 学习, 培 养 观 察、归 纳、概 括、运 算 及 逆 向 思 维 能 力.教 学 目 标 教 学 目 标 教 学 目 标
情 感 态 度 与 价 值 观
通 过 思 索、判 断 , 培 养 自 己 对 数 学 能 力 的 自 信 心.教 学 重 难 点 教 学 重 难 点 教 学 重 难 点 重 点
有 理 数 除 法 法 则.难 点.商 的 符 号 的 确 定.2.0 不 能 作 除 数 的 理 解.知 识 回 顾 知 识 回 顾 你能很快地说出下列各数的倒 数吗? 2 9 ?1-5 7 0-1 原数 3 8 1 3 8 1-1倒数5 5 9 71 =3 =3 99÷3 正数除以正数 3 1 =-3 ?9 负数除以正数 =-3-9÷3 3 1 零除以正数 =0 0=0 0÷3 3 因为-3×3=-9, 除 法 是 乘 法 所以-9÷3=-3.的 逆 运 算
除 以 一 个 正 数 等 于 乘 以 这 个 正 数 的 倒 数.1 9÷-3 正数除以负数 9 =-3 =-3 3 1-9÷-3 ?9 =3 =3 负数除以负数 3 1 零除以负数 0÷-3 =0 0 =0 3 因为3×-3 =-9, 因为-3×-39, 所以9÷-3 =-3.所以-9 ÷-33.因为0×-30, 除 以 一 个 正 数 等 于
所以 0÷-30.乘 以 这 个 正 数 的 倒 数.知 识 要 点 知 识 要 点
有 理 数 的 除 法 法 则 除以一个不等于0的数,等于 乘以这个数的倒数.1 即: aba b0 b例6:计算: 两数相除,两数符 号相同则结果为正,两 1 ?637;? 11 7数符号不同则结果为负, 2? 24 6并把绝对值相除.解 : 1 ?637? 637?9;12 7 11 6 11? 2? 24 6 24 7 28?9? 0 5? 9 50 0 05 90 除 以 任 何 一 个 不 等 于0 的 数 都 得0.知 识 要 点 知 识 要 点
有 理 数 除 法 法 则 两数相除,同号得正,异号得负, 并把绝对值相除0除以任何一个不等于0的数都得0.练 一 练 计算: 1 24 ?6;-4 1 2 ?4;-8 2 3 3 0;0 4 7 4 49 4 8 7 32例7:化简下列分数: ?16 1;4 39 分数可以理解 2为分子除以分母.?15 ?16 解 : 1?16?44;?4 39 13 239?15?39 ?1515 5例8:计算:? 5 1 ?135?5;? 乘除法混合运算,? 6? 统一成乘法? 5 1 2 4.5;? 7 9 7133 ? 1 32 4 5 ?有括号的? 5 解 : 1 ?135?5 先算括号6? 里的 5 11356 5 先算乘 1 5 1135 再算加 5 6 5 1276 127651解 : 2 4.5? 7 9? 9 7 1 2 5 9 7.10 无括号,只有 乘除,从左向 右计算? 7 1 3 解 : 3 ? ?1 3 2 4 57 5 332 4 5 7 4 1 3? 2 5 3 5 先把带分 数化为假 14 分数
25知 识 要 点 知 识 要 点
有 理 数 的 加 减 乘 除 混 合 运 算括号则按照“先乘除,后加减”的顺 序进行。注 意 注 意
1.因为0没有倒数,所以,0不能作除 数;2.在除法运算中,符号的确定与乘法运算一致;3.遇到乘除法混合运算时,应按照从左到右的顺序进行;4.遇到求带分数的倒数时,先将带分数化为假分数,再求其倒数.练 一 练 计算: 1 1 1 11 ?3;26 4 2 4
如有括号的先算括号里的,无
2 8 ?0.75;9 12 5 1 1 3 ? 5 6 2 3 例9:为提醒广大市民做好防冻御寒工作, 下列为某地区一周内最低气温预报。具体气 温如下: 星期
一 二 三 四 五 六 日-4 ℃
-2℃-5℃ 0℃-4℃-3℃-3℃ 气温 求本周的平均最低气温? 解:〔(-2)+(-5)+(-4)+0 +(-4)+(-3)+(-3)〕÷7 =(-21)÷7
=-3 例10:今抽查10袋精盐,每袋精盐的 标准重量是100克,超出部分记为正,统 计成下表: 精盐的 1 3 1 3 2 袋数 每袋超
出标准 +0.8-0.5 0 +1.3-1.2 的克数
问:这种10袋盐一共有多重?解:0.8+3 ×(-0.5)+0 +3 ×1.3+2 ×(-1.2)=0.8-1.5 +3.9-2.4=0.8100 ×10+0.8=1000.8.答:这10 袋盐一共重1000.8 克 我们可以用计算器进行复杂的数的 计算.例:用计算器计算: 0.8+3×(-0.5)+0 +3×1.3+2×(-1.2)解:用带符号键(-)的计算器, ●●
0 8(-)0 5 0 + 3 × + + ● ●(-)2 3 × 1 3 2 + × = 1 0.8练 一 练 用计算器计算:(1)653+(-450)+261+(-123);341 371(2)(-25)×33+(-26)×(-46);64.64(3)18.72÷(-52)-(-1430)÷22;(4)5.6×(-46)÷(-0.25)×3。3091.2课 堂 小 结 课 堂 小 结 课 堂 小 结.有 理 数 除 法 法 则 1 abab0(1)b(2)有理数除法法则:两数相除,同号得
正,异号得负,并把绝对值相除(3)0除以任何一个不等于0的数都得0.2.有 理 数 的 加 减 乘 除 混 合 运 算 : 如有括号的先算括号里的,无括号则按照
“先乘除,后加减”的顺序进行.随 堂 练习随 堂 练习随 堂 练习1.填空题 3 1(1)当x _____ 时 , 没 有 意 义;1x 1x 1(2)当x _____ 时 , 的 值 为0;3 3 ±1(3)当x _____ 时 , 没 有 意 义.1x2.下列说法正确的是()D A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1 C 3.下列运算结果不一定为负数的是()A.异号两数相乘 B.异号两数相除
C.异号两数相加 D.奇数个负因数的乘积4.化简下列分数.4 ?28 1 2 1-4 ?20 7 5 5 4 ?56-15 1 7 3 ?8 3a 5.已知: ?a ?5, ?b ?3且0, b ±19 求 2a-3b 的值.6.已知a,b互为相反数,c,d互为
倒数,m的绝对值是4, abmcd2008 求.m m +4 时 , 原 式2 004 m-4 时 , 原 式2 012习题 答 案习题 答 案习题 答 案
1.(1)56;(2)-60;(3)-1.16;(4)-6.1;(5)-0.1;(6)6.2 1 170 3 2.(1)-;(2);(3)-;(4)9 4 3 7 1 9 3.(1)-;(2)-;(3)-4;15 5 100 4 5(4);(5);(6)-17 17 2716 4.(1)-7;(2)4;(3)-;3 4 2(4)3;(5)-;(6)-5 3.1 1 5 5;;4;6;5;;6;4.5 5 1 27 6.(1)3;(2);(3);(4)20.12 4 16 7.(1)24;(2)210;(3);(4)100;5 1 33(5);(6);(7)0;(8)?11.2 28
第二篇:初中数学人教新课标版七年级上第一章有理数有理数的减法课件
初中数学人教新课标版七年级上第一章有理数有理数的减法课件
新 课 导 入 新 课 导 入
新 课 导 入以前只有在被减数(记作 a)大于或等 于减数(记作 b)的时候,我们会做减法 a-b(例如 2-1 ,1-1)现在,你会在 a 小于 b ,即被减数小于 减数时,做一下减法 a-b(例如 4-8 ,-7-0)吗?小数减去大数,所得的差是什么数? 提示: 4和-4有什么关系? 8-44, 4-8-4, 互为相反数结论:小数减去大数,等于大数 结论:小数减去大数,等于大数 减去小数的相反数减去小数的相反数教 学 目 标 教 学 目 标 教 学 目 标 知 识 与 能 力
知 识 与 能 力理解掌握有理数的减法法则并会进行 有理数的减法运算.过 程 与 方 法
过 程 与 方 法通过把减法运算转化为加法运算,渗 透转化思想;通过有理数减法法则的推导, 发展逻辑思维能力.教 学 目 标 教 学 目 标 教 学 目 标
情 感 态 度 与 价 值 观
情 感 态 度 与 价 值 观 通过揭示有理数的减法法则,渗透事 物间普遍联系、相互转化的辩证唯物主义 思想.教 学 重 难 点 教 学 重 难 点
教 学 重 难 点 重 点 重 点 有理数减法法则的理解和运用难 点 难 点
有理数减法法则的推出.温度计(1)和(2)的 总温度是: 5℃+(-5 ℃)=0℃.温度计(1)比 温度计(2)高出的 部分为10℃是怎么 计算出来呢? 5℃-(-5 ℃)=10℃.口算:(1)(-4)+(-3)_____;-7(-7)-(-4)_______;-3(3)(-8)+(+5)_-__ 3__;-8(-3)-(+5)=_______.减法是加法的逆运算什么数加上-4等于6? 10+(-4)6 相 反 数 6+410 6-(-4)10 相 同 结 果 比较下面的式子,能发现其中的规律 吗? 减 号 变 加 号 ? 15 ? 4 11 +(?15)? 4 减 数 变 相 反 数减 号 变 加 号7 ?(? 5)12 7 + 5 12 减 数 变 相 反 数
归 纳 : 有 理 数 的 减 法 可 以 转 化 为 加 法 来 进 行.知 识 要 点 知 识 要 点
有理数减法法则 减去一个数,等于加上这个数的 相反数.即: a-ba+(-b)注 意 注 意 减法在运算时有 2 个要素要发生变化: 2 两个变化:(1)减号变为加号;(2)减数变为它的相反数.例 计算:(1)(-10)-(-7);(2)5.6-(-3.4);解:(1)(-10)-(-7)=(-10)+7=-3;(2)5.6-(-3.4)=5.6+3.4=9;练 一 练
在括号内填上适当的数.(1)(-4)-(-2)(-4)+();2 5(2)0-(-5)0 +();-9(3)(-7)-9(-7)+();-32(4)2-(+32)= 2+();(5)(-6)-0=().-6全国部分城市天气预报 全国部分城市天气预报 城市 天气 最高温 最低温 温差 7 16 9 西安 多云 10 6 兰州 小雨 4 6.5 3.5-3 哈尔滨 小雪 1 1 0 银川 小雪 6-3 沈阳 小雪 9-2-3 呼和浩特 雨夹雪 1-1.5 11.5 乌鲁木齐 晴 13例:计算: 1 4? 6;2 09;3 2.2? 8.8;? 1 1? 4 45 4 3?减去(-6)等 于加上-6 的相 反数.解 : 1 4? 6? 462;2 090? 9? 9;? 3 2.2? 8.82.28.81 1;? 1 1 1 1 7 4 45? 4? 5? 94 3 4 3 1 2 减去-8.8等于加上-8.8 的相反数.练 一 练 1.计算:(1)(+7)-(-4);(2)(-0.45)-(-0.55);(3)0-(-9);(4)(-4)-0;(5)(-5)-(+3).(1)11;(2)0.1;(3)9;(4)-4;(5)-8.2.填空:(1)温度4℃比-6℃高________ 10 ℃;(2)温度-7℃比-2℃低_________℃;5 187(3)海拔高度-13m比-200m高_______m;60(4)从海拔20m到-40m,下降了______m.10减去一个数,等于这个数的相反数.2 一个数减去0,仍然等于这个数.正数 两正数的和是_______;负数
两负数的和是_______;正数
正数减负数得_______;负数
负数减正数得_______;正数、负数或0 两正数的差数_______;正数、负数或0 两负数的差________;三数直接加减关系
又是怎么样的呢? 例 回顾小学时学过的加减法混合运算的 顺序,并按照从左到右的顺序计算下式(1)(-10)+(+5)-(-4)-(+9)解:(-10)+(+5)-(-4)-(+9)=(-10)+(+5)+(+4)+(-9)= [(-10)+(-9)] +[(+5)+(+4)] =(-19)+(+9)=-10 运用了哪些 运算律?1 3 1 2(2)5 4 4 5 1 3 1 2 解 : 5 4 4 5 1 3 1 2? 5 4 4 5 省略括号 1 3 1 2 和前面的5 4 4 5 “+”号 1 2 3 1? 5 5 4 4 3? 1 添括号和括 5 2 号间”+”的号
5把下式写成省略加号的和的形式,并把它读出来(-4)+(-7)-(-5)+(-6)解:原式=(-4)+(-7)+(+5)+(-6)=-4-7+5-6 读作:负
4、负
7、正
5、负6的和或负4减7加5减6.观察上面式子,你能发现简化符号的规律吗? 观察上面式子,你能发现简化符号的规律吗? 规 律 : 同 号 得“+” , 异 号 得“-”.规 律 : 同 号 得“+” , 异 号 得“-”.规 律 :练 一 练 把下列各式先写成省略加号的和式, 并用两种方法读出:(1)(-6)-(+9)-(-10)+(-4);(2)(-13)-(+7)+(+7)-(-9);(1)-6-9+10-4;读作:负
6、负
9、正
10、负4的和或负6减 9加10减4;(2)-13-7+7+9;读作:负
13、负
7、正
7、正9的和或负13 减7加7加9;练 一 练
1.(+15)+(-19)-(-5)b a +(-b)2.加 减 混 合 运 算 要 以 统 一 成 加 法 运 算 , 即:a+b-c=a+b+(-c).随 堂 练习随 堂 练习
随 堂 练习1.如果两个数的和是负数,关于这两
个数下列说法正确的是(D)A.这两个数都是负数B.两个加数中,一个为负数,一个为
零C.一个加数为正数,另一个为负数, 并且负数的绝对值大于正数的绝对值D.有A、B、C三种可能2.计算.1 ?7 ? ?5?4?10 解: ?7 ? ?5?4?10?75410?6? 3 7 1 2 2 14 2 6 3? 3 7 1 2 解: 14 2 6 33 7 1 2? 1 4 2 6 3 13? 43.计算-1+2-3+4-5+6-??+50
解
:-1+2-3+4-5+6-???-49+50 =(-1+2)+(-3+4)+???+(-49+50)25组=1+1+1+???+1 25个=25 4.一架飞机作特技表演,起飞后的高度
变化如下表:此时飞机比起飞点高了多 少千米? 高度的 上升 下降 上升 下降 上升 4.5km 3.5km 4.4km 3.2km 3.6km 变化
+4.5km-3.5km +4.4km-3.2km +3.6km 记作
解:+4.5+(-3.5)+(+4.4)+(-3.2)+(+3.6)=4.5-3.5+4.4-3.2+3.6 =5.8km 答:此时飞机比起飞点高了5.8km.习题 答 案习题 答 案习题 答 案
1.(1)-4;(2)8;(3)-12;(4)-3;1 1 1 6;7;8 ?4(5)-3.6;5 15 3 12.(1)3;(2)0;(3)1.9;(4)5 3.(1)-16;(2)0;(3)16;(4)0;(8)102;(9)-10.8;(10)0.2.13.(-2)+(-2)-4,(-2)+(-2)
(5)-6;(6)6;(7)-31;+(-2)-6,(-2)+(-2)+(-2)+(-2)-8,(-2)+(-2)+(-2)+(-2)+(-2)-10猜想:(-2)×2=(-2)+(-2)=-4,(-2)×3=(-2)+(-2)+(-2)=-6,
第三篇:七年级数学有理数的除法课件
一、目的要求
1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。
二、内容分析
有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。
本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。
三、教学过程()
复习提问:
1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。
答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。
2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?
答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。
3.小学学过的除法和乘法的关系是什么?
答:除以一个数等于乘上这个数的倒数。
4.5÷0=?0÷0=?
答:0不能作除数,这两个除式没有意义。
新课讲解:
与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。
引例:计算:8×(-)和8÷(-4)
8×(-)=-2,8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,∵(-4)×(-2)=8,∴8÷(-4)=-2。
从而,8÷(-4)=8×(-),同样,有(-8)÷4=(-8)×,(-8)÷(-4)=(-8)×(-),这说明,有理数除法可以利用乘法来进行。
又(-4)×=-1,4×=1,由4和互为倒数,说明(-4)和(-)也互为倒数。
从而对于有理数仍然有:乘积为1的两个数互为倒数。
提问:-2,-,-1的倒数各是什么?为什么?
注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。
由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。
注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。
例1计算。(见教科书第103页例1)
解答过程见教科书第103页例1。
阅读教科书第102页至第103页。
课堂练习:教科书第104页练习第l,2,3题。
提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?
(答:略)
2.两数相除,商的符号如何确定?为什么?商的绝对值呢?
答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。
从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。
在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。
例2见教科书第104页例2。
解答过程见教科书第104页例2。
注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。
例3见教科书第105页例3。
分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。
对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。
解答过程见教科书第105页例3。
讲解教科书例3后的两个注意点。
课堂练习:见教科书第105页练习。
第1题可直接约分,也可化为除法。
第2题可先化成乘法,并利用乘法的运算律简化运算。
课堂小结:
阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。
提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?
(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)
四、课外作业
习题2.9A组第1,2,3,4,5题的双数小题,第6题。
选作题:习题2.9B组第1,2,3题双数小题。
第四篇:七年级上数学教案:1.4.2有理数的除法
1.4.2有理数的除法(1)
教学目标
1.知识与技能
①了解有理数除法的定义.
②经历有理数除法法则的过程,会进行有理数的除法运算.
③会化简分数. 2.过程与方法
①通过有理数除法法则的导出及运用,让学生体会转化思想.
②培养学生运用数学思想指导数学思维活动的能力. 3.情感、态度与价值观
在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益. 教学重点难点
重点:正确应用法则进行有理数的除法运算.
难点:怎样根据不同的情况来选取适当的方法求商. 教学过程
(一)创设情境,导入新课
我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.
(二)合作交流,解读探究
试一试(-10)÷2=? 交流 因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10 显然有(-5)×2=-10,所以(-10)÷2=-5 我们还知道:(-10)×=-5 由上式表明除法可转为乘法.即:(-10)÷2=(-10)×
再试一试:(-12)÷(-3)=?
【总结】 除以一个数,等于乘以这个数的倒数(除数不能为0).•用字母表示成a÷b=a×,(b≠0).
(三)应用迁移,巩固提高
例1 计算:(1)(-36)÷9(2)(-63)÷(-9)(3)(-123)÷
5251b1212(4)0÷3(5)1÷(-7)(6)(-6.5)÷0.13(7)(-)÷(-)(8)0÷(-5)
提出问题:在大家的计算过程中,应用除法法则的同时,有没有新的发现?
学生活动:分组讨论.
【总结】 两数相除,同号得正,异号得负,并把绝对值相除.0•除以任何一个不等于0的数,都得0.
【点拨】 这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试来比较一下,以上各题分别用哪种运算法则更简便.
【讨论】(1)、(2)、(5)、(6)用确定符号,并把绝对值相除. 4525(3)、(7)用除以一个数,等于乘以这个数的倒数.
【引导】 小学里我们都知道,除号与分数线可相互转换.如-12=-12÷3.•利用这个关系,我们可以将分数进行化简. 3 例2 化简下列分数
(1)-4512-70(2)(3)(4)-15-36-14-8 学生活动:口答.
备选例题:ab+(ab≠0)的所有可能的值有(C)|a||b| A.1个 B.2个 C.3个 D.4个
【点拨】本题含有绝对值符号,故要考虑a、b的正负情况.当a>0时,aa=1;当a<0时,=-1. |a||a| 【答案】 C 例3 试着用计算器计算
(1)-0.056÷1.4 =-0.04;(2)1.252÷(-4.4)=-0.285
(3)(-3.561)÷(-1.96)=1.817
【说明】 让学生练习用计算器进行有理数的除法计算.通过自己的亲身的探索、操作而增强学生的独立意识和动手能力.
(四)总结反思,拓展延伸
本节课大家一起学习了有理数除法法则.有理数的除法有2种方法,•一是根据除以一个数等于乘以这个数的倒数,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第 二种.
(1)m为负整数,它的倒数,它的相反数为-m,试比较m,和-m的大小.
(2)m为正整数,结论又怎样?
(3)m为非零有理数,讨论m,和-m的大小.
【答案】(1)-m>≥m(2)m≥>-m(3)①-1
(五)课堂跟踪反馈
夯实基础 1.选择题
(1)如果一个数除以它的倒数,商是1,那么这个数是(D)A.1 B.2 C.-1 D.±1(2)若两个有理数的商是负数,那么这两个数一定是(D)A.都是正数 B.都是负数 C.符号相同 D.符号不同
(3)|a|=-1,则a为(B)a1m1m1m1m1m1m1m1m1m A.正数 B.负数 C.非正数 D.非负数
(4)若a+b<0,>0,则下列成立的是(B)
A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 2.计算题
ba4(1)(-2)÷(-- 7217571)=6(2)3.5÷÷(-1)=
8714(3)-÷(-7)÷(-35333)=-(4)(-1)÷(+)÷(-)214=359 5575
第五篇:数学:1.4.2《有理数的除法》学案(人教版七年级上)
最专业的中小学教学资源共享平台
数学:1.4.2《有理数的除法(2)》学案(人教版七年级上)
【学习目标】:
1、学会用计算器进行有理数的除法运算;
2、掌握有理数的混合运算顺序;
【学习重点】:有理数的混合运算;
【学习难点】:运算顺序的确定与性质符号的处理; 【导学指导】
一、知识链接
1、计算(1)(-8)÷(-4);
(2)(-9)÷3 ;(3)(—0.1)÷1×(—100); 22.有理数的除法法则:
二、自主探究 1.例8 计算
(1)(—8)+4÷(-2)(2)(-7)×(-5)—90÷(-15)你的计算方法是先算 法,再算 法。
有理数加减乘除的混合运算顺序应该是 写出解答过程
2.自学完成例9(阅读课本P36—P37页内容)
精品资料
最专业的中小学教学资源共享平台
【课堂练习】
1、计算(P36练习)
(1)6—(—12)÷(—3);(2)3×(—4)+(—28)÷7;
(3)(—48)÷8—(—25)×(—6);(4)42()()(0.25);
2.P37练习
【要点归纳】:
【拓展训练】
1、选择题
(1)下列运算有错误的是()A.233411÷(-3)=3×(-3)B.(5)5(2)32 C.8-(-2)=8+2 D.2-7=(+2)+(-7)(2)下列运算正确的是()A.34; B.0-2=-2; C.2、计算
1)、18—6÷(—2)×(); 2)11+(—22)—3×(—11);
1122341; D.(-2)÷(-4)=2; 4313精品资料